Description: Properties of an ordered pair with a finite first component, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, e.g., fusgrfis . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opfi1ind.e | ⊢ 𝐸 ∈ V | |
opfi1ind.f | ⊢ 𝐹 ∈ V | ||
opfi1ind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | ||
opfi1ind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | ||
opfi1ind.3 | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣 ) → 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ∈ 𝐺 ) | ||
opfi1ind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | ||
opfi1ind.base | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) | ||
opfi1ind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | ||
Assertion | opfi1ind | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ) → 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opfi1ind.e | ⊢ 𝐸 ∈ V | |
2 | opfi1ind.f | ⊢ 𝐹 ∈ V | |
3 | opfi1ind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | |
4 | opfi1ind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | |
5 | opfi1ind.3 | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣 ) → 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ∈ 𝐺 ) | |
6 | opfi1ind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | |
7 | opfi1ind.base | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) | |
8 | opfi1ind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | |
9 | hashge0 | ⊢ ( 𝑉 ∈ Fin → 0 ≤ ( ♯ ‘ 𝑉 ) ) | |
10 | 9 | adantl | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ) → 0 ≤ ( ♯ ‘ 𝑉 ) ) |
11 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
12 | 1 2 11 3 4 5 6 7 8 | opfi1uzind | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 0 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |
13 | 10 12 | mpd3an3 | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ) → 𝜑 ) |