Metamath Proof Explorer


Theorem opi2

Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)

Ref Expression
Hypotheses opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion opi2 { 𝐴 , 𝐵 } ∈ ⟨ 𝐴 , 𝐵

Proof

Step Hyp Ref Expression
1 opi1.1 𝐴 ∈ V
2 opi1.2 𝐵 ∈ V
3 prex { 𝐴 , 𝐵 } ∈ V
4 3 prid2 { 𝐴 , 𝐵 } ∈ { { 𝐴 } , { 𝐴 , 𝐵 } }
5 1 2 dfop 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } }
6 4 5 eleqtrri { 𝐴 , 𝐵 } ∈ ⟨ 𝐴 , 𝐵