Metamath Proof Explorer


Theorem opid

Description: The ordered pair <. A , A >. in Kuratowski's representation. Inference form of opidg . (Contributed by FL, 28-Dec-2011) (Proof shortened by AV, 16-Feb-2022) (Avoid depending on this detail.)

Ref Expression
Hypothesis opid.1 𝐴 ∈ V
Assertion opid 𝐴 , 𝐴 ⟩ = { { 𝐴 } }

Proof

Step Hyp Ref Expression
1 opid.1 𝐴 ∈ V
2 opidg ( 𝐴 ∈ V → ⟨ 𝐴 , 𝐴 ⟩ = { { 𝐴 } } )
3 1 2 ax-mp 𝐴 , 𝐴 ⟩ = { { 𝐴 } }