| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opidon2OLD.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | eqid | ⊢ dom  dom  𝐺  =  dom  dom  𝐺 | 
						
							| 3 | 2 | opidonOLD | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺 ) | 
						
							| 4 |  | forn | ⊢ ( 𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺  →  ran  𝐺  =  dom  dom  𝐺 ) | 
						
							| 5 | 1 4 | eqtr2id | ⊢ ( 𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺  →  dom  dom  𝐺  =  𝑋 ) | 
						
							| 6 |  | xpeq12 | ⊢ ( ( dom  dom  𝐺  =  𝑋  ∧  dom  dom  𝐺  =  𝑋 )  →  ( dom  dom  𝐺  ×  dom  dom  𝐺 )  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 7 | 6 | anidms | ⊢ ( dom  dom  𝐺  =  𝑋  →  ( dom  dom  𝐺  ×  dom  dom  𝐺 )  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 8 |  | foeq2 | ⊢ ( ( dom  dom  𝐺  ×  dom  dom  𝐺 )  =  ( 𝑋  ×  𝑋 )  →  ( 𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺  ↔  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ dom  dom  𝐺 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( dom  dom  𝐺  =  𝑋  →  ( 𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺  ↔  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ dom  dom  𝐺 ) ) | 
						
							| 10 |  | foeq3 | ⊢ ( dom  dom  𝐺  =  𝑋  →  ( 𝐺 : ( 𝑋  ×  𝑋 ) –onto→ dom  dom  𝐺  ↔  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋 ) ) | 
						
							| 11 | 9 10 | bitrd | ⊢ ( dom  dom  𝐺  =  𝑋  →  ( 𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺  ↔  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋 ) ) | 
						
							| 12 | 11 | biimpd | ⊢ ( dom  dom  𝐺  =  𝑋  →  ( 𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺  →  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋 ) ) | 
						
							| 13 | 5 12 | mpcom | ⊢ ( 𝐺 : ( dom  dom  𝐺  ×  dom  dom  𝐺 ) –onto→ dom  dom  𝐺  →  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋 ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋 ) |