Step |
Hyp |
Ref |
Expression |
1 |
|
opidonOLD.1 |
⊢ 𝑋 = dom dom 𝐺 |
2 |
|
inss1 |
⊢ ( Magma ∩ ExId ) ⊆ Magma |
3 |
2
|
sseli |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 ∈ Magma ) |
4 |
1
|
ismgmOLD |
⊢ ( 𝐺 ∈ Magma → ( 𝐺 ∈ Magma ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
5 |
4
|
ibi |
⊢ ( 𝐺 ∈ Magma → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
6 |
3 5
|
syl |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
7 |
|
inss2 |
⊢ ( Magma ∩ ExId ) ⊆ ExId |
8 |
7
|
sseli |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 ∈ ExId ) |
9 |
1
|
isexid |
⊢ ( 𝐺 ∈ ExId → ( 𝐺 ∈ ExId ↔ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
10 |
9
|
biimpd |
⊢ ( 𝐺 ∈ ExId → ( 𝐺 ∈ ExId → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
11 |
8 8 10
|
sylc |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
12 |
|
simpl |
⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
13 |
12
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑢 𝐺 𝑥 ) = ( 𝑢 𝐺 𝑦 ) ) |
15 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
17 |
16
|
rspcv |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
18 |
|
eqcom |
⊢ ( 𝑦 = ( 𝑢 𝐺 𝑥 ) ↔ ( 𝑢 𝐺 𝑥 ) = 𝑦 ) |
19 |
14
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 𝐺 𝑥 ) = 𝑦 ↔ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
20 |
18 19
|
syl5bb |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 = ( 𝑢 𝐺 𝑥 ) ↔ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
21 |
20
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
22 |
21
|
ex |
⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑢 𝐺 𝑦 ) = 𝑦 → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
23 |
17 22
|
syld |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
24 |
13 23
|
syl5 |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
25 |
24
|
reximdv |
⊢ ( 𝑦 ∈ 𝑋 → ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
26 |
25
|
impcom |
⊢ ( ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
27 |
26
|
ralrimiva |
⊢ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑦 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
28 |
11 27
|
syl |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∀ 𝑦 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
29 |
|
foov |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
30 |
6 28 29
|
sylanbrc |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |