| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opidonOLD.1 | ⊢ 𝑋  =  dom  dom  𝐺 | 
						
							| 2 |  | inss1 | ⊢ ( Magma  ∩   ExId  )  ⊆  Magma | 
						
							| 3 | 2 | sseli | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  𝐺  ∈  Magma ) | 
						
							| 4 | 1 | ismgmOLD | ⊢ ( 𝐺  ∈  Magma  →  ( 𝐺  ∈  Magma  ↔  𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 5 | 4 | ibi | ⊢ ( 𝐺  ∈  Magma  →  𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 7 |  | inss2 | ⊢ ( Magma  ∩   ExId  )  ⊆   ExId | 
						
							| 8 | 7 | sseli | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  𝐺  ∈   ExId  ) | 
						
							| 9 | 1 | isexid | ⊢ ( 𝐺  ∈   ExId   →  ( 𝐺  ∈   ExId   ↔  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝐺  ∈   ExId   →  ( 𝐺  ∈   ExId   →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 11 | 8 8 10 | sylc | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 13 | 12 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑢 𝐺 𝑥 )  =  ( 𝑢 𝐺 𝑦 ) ) | 
						
							| 15 |  | id | ⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 16 | 14 15 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ↔  ( 𝑢 𝐺 𝑦 )  =  𝑦 ) ) | 
						
							| 17 | 16 | rspcv | ⊢ ( 𝑦  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥  →  ( 𝑢 𝐺 𝑦 )  =  𝑦 ) ) | 
						
							| 18 |  | eqcom | ⊢ ( 𝑦  =  ( 𝑢 𝐺 𝑥 )  ↔  ( 𝑢 𝐺 𝑥 )  =  𝑦 ) | 
						
							| 19 | 14 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑢 𝐺 𝑥 )  =  𝑦  ↔  ( 𝑢 𝐺 𝑦 )  =  𝑦 ) ) | 
						
							| 20 | 18 19 | bitrid | ⊢ ( 𝑥  =  𝑦  →  ( 𝑦  =  ( 𝑢 𝐺 𝑥 )  ↔  ( 𝑢 𝐺 𝑦 )  =  𝑦 ) ) | 
						
							| 21 | 20 | rspcev | ⊢ ( ( 𝑦  ∈  𝑋  ∧  ( 𝑢 𝐺 𝑦 )  =  𝑦 )  →  ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝑦  ∈  𝑋  →  ( ( 𝑢 𝐺 𝑦 )  =  𝑦  →  ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) ) | 
						
							| 23 | 17 22 | syld | ⊢ ( 𝑦  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥  →  ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) ) | 
						
							| 24 | 13 23 | syl5 | ⊢ ( 𝑦  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) ) | 
						
							| 25 | 24 | reximdv | ⊢ ( 𝑦  ∈  𝑋  →  ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∃ 𝑢  ∈  𝑋 ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) ) | 
						
							| 26 | 25 | impcom | ⊢ ( ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  𝑦  ∈  𝑋 )  →  ∃ 𝑢  ∈  𝑋 ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 27 | 26 | ralrimiva | ⊢ ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑦  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 28 | 11 27 | syl | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ∀ 𝑦  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 29 |  | foov | ⊢ ( 𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ∃ 𝑥  ∈  𝑋 𝑦  =  ( 𝑢 𝐺 𝑥 ) ) ) | 
						
							| 30 | 6 28 29 | sylanbrc | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋 ) |