Step |
Hyp |
Ref |
Expression |
1 |
|
opifismgm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
opifismgm.p |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ if ( 𝜓 , 𝐶 , 𝐷 ) ) |
3 |
|
opifismgm.n |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
4 |
|
opifismgm.c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
5 |
|
opifismgm.d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ 𝐵 ) |
6 |
4 5
|
ifcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ) |
7 |
6
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
11 |
2
|
ovmpoelrn |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
13 |
12
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
14 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
16 |
1 15
|
ismgmn0 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
17 |
16
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
18 |
14 17
|
sylbi |
⊢ ( 𝐵 ≠ ∅ → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
20 |
13 19
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∈ Mgm ) |