Step |
Hyp |
Ref |
Expression |
1 |
|
opcon3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
opcon3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
opcon3.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
1 3
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
6 |
1 2 3
|
oplecon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
7 |
5 6
|
syld3an2 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
8 |
1 3
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
10 |
9
|
breq2d |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ↔ ( ⊥ ‘ 𝑌 ) ≤ 𝑋 ) ) |
11 |
7 10
|
bitrd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ 𝑋 ) ) |