| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							opcon3.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							opcon3.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							opcon3.o | 
							⊢  ⊥   =  ( oc ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6 7
							 | 
							oposlem | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( (  ⊥  ‘ 𝑋 )  ∈  𝐵  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  =  𝑋  ∧  ( 𝑋  ≤  𝑌  →  (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 ) ) )  ∧  ( 𝑋 ( join ‘ 𝐾 ) (  ⊥  ‘ 𝑋 ) )  =  ( 1. ‘ 𝐾 )  ∧  ( 𝑋 ( meet ‘ 𝐾 ) (  ⊥  ‘ 𝑋 ) )  =  ( 0. ‘ 𝐾 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simp1d | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑋 )  ∈  𝐵  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  =  𝑋  ∧  ( 𝑋  ≤  𝑌  →  (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							simp3d | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 ) ) )  |