| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							opcon3.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							opcon3.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							opcon3.o | 
							⊢  ⊥   =  ( oc ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							oplecon3 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  OP )  | 
						
						
							| 6 | 
							
								1 3
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								1 3
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  (  ⊥  ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								1 2 3
							 | 
							oplecon3 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  (  ⊥  ‘ 𝑌 )  ∈  𝐵  ∧  (  ⊥  ‘ 𝑋 )  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ≤  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) )  | 
						
						
							| 11 | 
							
								5 7 9 10
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ≤  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) )  | 
						
						
							| 12 | 
							
								1 3
							 | 
							opococ | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 14 | 
							
								1 3
							 | 
							opococ | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 15 | 
							
								14
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							breq12d | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ≤  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  ↔  𝑋  ≤  𝑌 ) )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							sylibd | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 )  →  𝑋  ≤  𝑌 ) )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							impbid | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  ↔  (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 ) ) )  |