Metamath Proof Explorer
Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995) (Proof shortened by Wolf Lammen, 8-Dec-2012)
|
|
Ref |
Expression |
|
Hypotheses |
oplem1.1 |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) |
|
|
oplem1.2 |
⊢ ( 𝜑 → ( 𝜃 ∨ 𝜏 ) ) |
|
|
oplem1.3 |
⊢ ( 𝜓 ↔ 𝜃 ) |
|
|
oplem1.4 |
⊢ ( 𝜒 → ( 𝜃 ↔ 𝜏 ) ) |
|
Assertion |
oplem1 |
⊢ ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
oplem1.1 |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) |
2 |
|
oplem1.2 |
⊢ ( 𝜑 → ( 𝜃 ∨ 𝜏 ) ) |
3 |
|
oplem1.3 |
⊢ ( 𝜓 ↔ 𝜃 ) |
4 |
|
oplem1.4 |
⊢ ( 𝜒 → ( 𝜃 ↔ 𝜏 ) ) |
5 |
3
|
notbii |
⊢ ( ¬ 𝜓 ↔ ¬ 𝜃 ) |
6 |
1
|
ord |
⊢ ( 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) |
7 |
5 6
|
syl5bir |
⊢ ( 𝜑 → ( ¬ 𝜃 → 𝜒 ) ) |
8 |
2
|
ord |
⊢ ( 𝜑 → ( ¬ 𝜃 → 𝜏 ) ) |
9 |
7 8
|
jcad |
⊢ ( 𝜑 → ( ¬ 𝜃 → ( 𝜒 ∧ 𝜏 ) ) ) |
10 |
4
|
biimpar |
⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜃 ) |
11 |
9 10
|
syl6 |
⊢ ( 𝜑 → ( ¬ 𝜃 → 𝜃 ) ) |
12 |
11
|
pm2.18d |
⊢ ( 𝜑 → 𝜃 ) |
13 |
12 3
|
sylibr |
⊢ ( 𝜑 → 𝜓 ) |