Metamath Proof Explorer


Theorem oplem1

Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995) (Proof shortened by Wolf Lammen, 8-Dec-2012)

Ref Expression
Hypotheses oplem1.1 ( 𝜑 → ( 𝜓𝜒 ) )
oplem1.2 ( 𝜑 → ( 𝜃𝜏 ) )
oplem1.3 ( 𝜓𝜃 )
oplem1.4 ( 𝜒 → ( 𝜃𝜏 ) )
Assertion oplem1 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 oplem1.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 oplem1.2 ( 𝜑 → ( 𝜃𝜏 ) )
3 oplem1.3 ( 𝜓𝜃 )
4 oplem1.4 ( 𝜒 → ( 𝜃𝜏 ) )
5 3 notbii ( ¬ 𝜓 ↔ ¬ 𝜃 )
6 1 ord ( 𝜑 → ( ¬ 𝜓𝜒 ) )
7 5 6 syl5bir ( 𝜑 → ( ¬ 𝜃𝜒 ) )
8 2 ord ( 𝜑 → ( ¬ 𝜃𝜏 ) )
9 7 8 jcad ( 𝜑 → ( ¬ 𝜃 → ( 𝜒𝜏 ) ) )
10 4 biimpar ( ( 𝜒𝜏 ) → 𝜃 )
11 9 10 syl6 ( 𝜑 → ( ¬ 𝜃𝜃 ) )
12 11 pm2.18d ( 𝜑𝜃 )
13 12 3 sylibr ( 𝜑𝜓 )