| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opltcon3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
opltcon3.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 3 |
|
opltcon3.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 4 |
1 3
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 5 |
4
|
3adant2 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 6 |
1 2 3
|
opltcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 < ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) < ( ⊥ ‘ 𝑋 ) ) ) |
| 7 |
5 6
|
syld3an3 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) < ( ⊥ ‘ 𝑋 ) ) ) |
| 8 |
1 3
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 9 |
8
|
3adant2 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 10 |
9
|
breq1d |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) < ( ⊥ ‘ 𝑋 ) ↔ 𝑌 < ( ⊥ ‘ 𝑋 ) ) ) |
| 11 |
7 10
|
bitrd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < ( ⊥ ‘ 𝑌 ) ↔ 𝑌 < ( ⊥ ‘ 𝑋 ) ) ) |