Metamath Proof Explorer


Theorem opltcon2b

Description: Contraposition law for strict ordering in orthoposets. ( chsscon2 analog.) (Contributed by NM, 5-Nov-2011)

Ref Expression
Hypotheses opltcon3.b 𝐵 = ( Base ‘ 𝐾 )
opltcon3.s < = ( lt ‘ 𝐾 )
opltcon3.o = ( oc ‘ 𝐾 )
Assertion opltcon2b ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < ( 𝑌 ) ↔ 𝑌 < ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 opltcon3.b 𝐵 = ( Base ‘ 𝐾 )
2 opltcon3.s < = ( lt ‘ 𝐾 )
3 opltcon3.o = ( oc ‘ 𝐾 )
4 1 3 opoccl ( ( 𝐾 ∈ OP ∧ 𝑌𝐵 ) → ( 𝑌 ) ∈ 𝐵 )
5 4 3adant2 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 ) ∈ 𝐵 )
6 1 2 3 opltcon3b ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ∧ ( 𝑌 ) ∈ 𝐵 ) → ( 𝑋 < ( 𝑌 ) ↔ ( ‘ ( 𝑌 ) ) < ( 𝑋 ) ) )
7 5 6 syld3an3 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < ( 𝑌 ) ↔ ( ‘ ( 𝑌 ) ) < ( 𝑋 ) ) )
8 1 3 opococ ( ( 𝐾 ∈ OP ∧ 𝑌𝐵 ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
9 8 3adant2 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
10 9 breq1d ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ‘ ( 𝑌 ) ) < ( 𝑋 ) ↔ 𝑌 < ( 𝑋 ) ) )
11 7 10 bitrd ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < ( 𝑌 ) ↔ 𝑌 < ( 𝑋 ) ) )