| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opncldf.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
opncldf.2 |
⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) |
| 3 |
1
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ) → ( 𝑋 ∖ 𝑢 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 4 |
1
|
cldopn |
⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) |
| 6 |
1
|
cldss |
⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ 𝑋 ) |
| 7 |
6
|
ad2antll |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑥 ⊆ 𝑋 ) |
| 8 |
|
dfss4 |
⊢ ( 𝑥 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 9 |
7 8
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑥 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) |
| 11 |
|
difeq2 |
⊢ ( 𝑢 = ( 𝑋 ∖ 𝑥 ) → ( 𝑋 ∖ 𝑢 ) = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) |
| 12 |
11
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑋 ∖ 𝑥 ) → ( 𝑥 = ( 𝑋 ∖ 𝑢 ) ↔ 𝑥 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) ) |
| 13 |
10 12
|
syl5ibrcom |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑢 = ( 𝑋 ∖ 𝑥 ) → 𝑥 = ( 𝑋 ∖ 𝑢 ) ) ) |
| 14 |
1
|
eltopss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ) → 𝑢 ⊆ 𝑋 ) |
| 15 |
14
|
adantrr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑢 ⊆ 𝑋 ) |
| 16 |
|
dfss4 |
⊢ ( 𝑢 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) = 𝑢 ) |
| 17 |
15 16
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) = 𝑢 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑢 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) ) |
| 19 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝑋 ∖ 𝑢 ) → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) ) |
| 20 |
19
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑋 ∖ 𝑢 ) → ( 𝑢 = ( 𝑋 ∖ 𝑥 ) ↔ 𝑢 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) ) ) |
| 21 |
18 20
|
syl5ibrcom |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑥 = ( 𝑋 ∖ 𝑢 ) → 𝑢 = ( 𝑋 ∖ 𝑥 ) ) ) |
| 22 |
13 21
|
impbid |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑢 = ( 𝑋 ∖ 𝑥 ) ↔ 𝑥 = ( 𝑋 ∖ 𝑢 ) ) ) |
| 23 |
2 3 5 22
|
f1ocnv2d |
⊢ ( 𝐽 ∈ Top → ( 𝐹 : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) ∧ ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) ) |