Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| opncldf.2 | ⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) | ||
| Assertion | opncldf2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝑋 ∖ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | opncldf.2 | ⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) | |
| 3 | difeq2 | ⊢ ( 𝑢 = 𝐴 → ( 𝑋 ∖ 𝑢 ) = ( 𝑋 ∖ 𝐴 ) ) | |
| 4 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ∈ 𝐽 ) | |
| 5 | 1 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝑋 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) | 
| 6 | 2 3 4 5 | fvmptd3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝑋 ∖ 𝐴 ) ) |