Metamath Proof Explorer


Theorem opncldf3

Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = ( 𝑢𝐽 ↦ ( 𝑋𝑢 ) )
Assertion opncldf3 ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹𝐵 ) = ( 𝑋𝐵 ) )

Proof

Step Hyp Ref Expression
1 opncldf.1 𝑋 = 𝐽
2 opncldf.2 𝐹 = ( 𝑢𝐽 ↦ ( 𝑋𝑢 ) )
3 cldrcl ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
4 1 2 opncldf1 ( 𝐽 ∈ Top → ( 𝐹 : 𝐽1-1-onto→ ( Clsd ‘ 𝐽 ) ∧ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) ) ) )
5 4 simprd ( 𝐽 ∈ Top → 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) ) )
6 3 5 syl ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) ) )
7 6 fveq1d ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹𝐵 ) = ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) ) ‘ 𝐵 ) )
8 1 cldopn ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋𝐵 ) ∈ 𝐽 )
9 difeq2 ( 𝑥 = 𝐵 → ( 𝑋𝑥 ) = ( 𝑋𝐵 ) )
10 eqid ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) ) = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) )
11 9 10 fvmptg ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋𝐵 ) ∈ 𝐽 ) → ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) ) ‘ 𝐵 ) = ( 𝑋𝐵 ) )
12 8 11 mpdan ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋𝑥 ) ) ‘ 𝐵 ) = ( 𝑋𝐵 ) )
13 7 12 eqtrd ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹𝐵 ) = ( 𝑋𝐵 ) )