| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opncldf.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
opncldf.2 |
⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) |
| 3 |
|
cldrcl |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 4 |
1 2
|
opncldf1 |
⊢ ( 𝐽 ∈ Top → ( 𝐹 : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) ∧ ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) ) |
| 5 |
4
|
simprd |
⊢ ( 𝐽 ∈ Top → ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ◡ 𝐹 ‘ 𝐵 ) = ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ‘ 𝐵 ) ) |
| 8 |
1
|
cldopn |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
| 9 |
|
difeq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝐵 ) ) |
| 10 |
|
eqid |
⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) |
| 11 |
9 10
|
fvmptg |
⊢ ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) → ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ‘ 𝐵 ) = ( 𝑋 ∖ 𝐵 ) ) |
| 12 |
8 11
|
mpdan |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ‘ 𝐵 ) = ( 𝑋 ∖ 𝐵 ) ) |
| 13 |
7 12
|
eqtrd |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ◡ 𝐹 ‘ 𝐵 ) = ( 𝑋 ∖ 𝐵 ) ) |