| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opncldf.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | opncldf.2 | ⊢ 𝐹  =  ( 𝑢  ∈  𝐽  ↦  ( 𝑋  ∖  𝑢 ) ) | 
						
							| 3 |  | cldrcl | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 4 | 1 2 | opncldf1 | ⊢ ( 𝐽  ∈  Top  →  ( 𝐹 : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 )  ∧  ◡ 𝐹  =  ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝐽  ∈  Top  →  ◡ 𝐹  =  ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  ◡ 𝐹  =  ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  ( ◡ 𝐹 ‘ 𝐵 )  =  ( ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) ) ‘ 𝐵 ) ) | 
						
							| 8 | 1 | cldopn | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝑋  ∖  𝐵 )  ∈  𝐽 ) | 
						
							| 9 |  | difeq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑋  ∖  𝑥 )  =  ( 𝑋  ∖  𝐵 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) )  =  ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) ) | 
						
							| 11 | 9 10 | fvmptg | ⊢ ( ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑋  ∖  𝐵 )  ∈  𝐽 )  →  ( ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) ) ‘ 𝐵 )  =  ( 𝑋  ∖  𝐵 ) ) | 
						
							| 12 | 8 11 | mpdan | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  ( ( 𝑥  ∈  ( Clsd ‘ 𝐽 )  ↦  ( 𝑋  ∖  𝑥 ) ) ‘ 𝐵 )  =  ( 𝑋  ∖  𝐵 ) ) | 
						
							| 13 | 7 12 | eqtrd | ⊢ ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  →  ( ◡ 𝐹 ‘ 𝐵 )  =  ( 𝑋  ∖  𝐵 ) ) |