Metamath Proof Explorer


Theorem opnlen0

Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd and op0le to see if this is useful elsewhere. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses op0le.b 𝐵 = ( Base ‘ 𝐾 )
op0le.l = ( le ‘ 𝐾 )
op0le.z 0 = ( 0. ‘ 𝐾 )
Assertion opnlen0 ( ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) ∧ ¬ 𝑋 𝑌 ) → 𝑋0 )

Proof

Step Hyp Ref Expression
1 op0le.b 𝐵 = ( Base ‘ 𝐾 )
2 op0le.l = ( le ‘ 𝐾 )
3 op0le.z 0 = ( 0. ‘ 𝐾 )
4 1 2 3 op0le ( ( 𝐾 ∈ OP ∧ 𝑌𝐵 ) → 0 𝑌 )
5 4 3adant2 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → 0 𝑌 )
6 breq1 ( 𝑋 = 0 → ( 𝑋 𝑌0 𝑌 ) )
7 5 6 syl5ibrcom ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = 0𝑋 𝑌 ) )
8 7 necon3bd ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌𝑋0 ) )
9 8 imp ( ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵 ) ∧ ¬ 𝑋 𝑌 ) → 𝑋0 )