Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd and op0le to see if this is useful elsewhere. (Contributed by NM, 5-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | op0le.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
op0le.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
op0le.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
Assertion | opnlen0 | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ 𝑌 ) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0le.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | op0le.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
3 | op0le.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
4 | 1 2 3 | op0le | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → 0 ≤ 𝑌 ) |
5 | 4 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 0 ≤ 𝑌 ) |
6 | breq1 | ⊢ ( 𝑋 = 0 → ( 𝑋 ≤ 𝑌 ↔ 0 ≤ 𝑌 ) ) | |
7 | 5 6 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 0 → 𝑋 ≤ 𝑌 ) ) |
8 | 7 | necon3bd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 → 𝑋 ≠ 0 ) ) |
9 | 8 | imp | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ 𝑌 ) → 𝑋 ≠ 0 ) |