| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtopbas | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases | 
						
							| 2 |  | eltg3 | ⊢ ( ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases  →  ( 𝐴  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  ↔  ∃ 𝑥 ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  ∧  𝐴  =  ∪  𝑥 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝐴  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  ↔  ∃ 𝑥 ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  ∧  𝐴  =  ∪  𝑥 ) ) | 
						
							| 4 |  | uniiun | ⊢ ∪  𝑥  =  ∪  𝑦  ∈  𝑥 𝑦 | 
						
							| 5 |  | ssdomg | ⊢ ( ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases  →  ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  𝑥  ≼  ( (,)  “  ( ℚ  ×  ℚ ) ) ) ) | 
						
							| 6 | 1 5 | ax-mp | ⊢ ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  𝑥  ≼  ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 7 |  | omelon | ⊢ ω  ∈  On | 
						
							| 8 |  | qnnen | ⊢ ℚ  ≈  ℕ | 
						
							| 9 |  | xpen | ⊢ ( ( ℚ  ≈  ℕ  ∧  ℚ  ≈  ℕ )  →  ( ℚ  ×  ℚ )  ≈  ( ℕ  ×  ℕ ) ) | 
						
							| 10 | 8 8 9 | mp2an | ⊢ ( ℚ  ×  ℚ )  ≈  ( ℕ  ×  ℕ ) | 
						
							| 11 |  | xpnnen | ⊢ ( ℕ  ×  ℕ )  ≈  ℕ | 
						
							| 12 | 10 11 | entri | ⊢ ( ℚ  ×  ℚ )  ≈  ℕ | 
						
							| 13 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 14 | 12 13 | entr2i | ⊢ ω  ≈  ( ℚ  ×  ℚ ) | 
						
							| 15 |  | isnumi | ⊢ ( ( ω  ∈  On  ∧  ω  ≈  ( ℚ  ×  ℚ ) )  →  ( ℚ  ×  ℚ )  ∈  dom  card ) | 
						
							| 16 | 7 14 15 | mp2an | ⊢ ( ℚ  ×  ℚ )  ∈  dom  card | 
						
							| 17 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 18 |  | ffun | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  Fun  (,) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ Fun  (,) | 
						
							| 20 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 21 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 22 | 20 21 | sstri | ⊢ ℚ  ⊆  ℝ* | 
						
							| 23 |  | xpss12 | ⊢ ( ( ℚ  ⊆  ℝ*  ∧  ℚ  ⊆  ℝ* )  →  ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 24 | 22 22 23 | mp2an | ⊢ ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 25 | 17 | fdmi | ⊢ dom  (,)  =  ( ℝ*  ×  ℝ* ) | 
						
							| 26 | 24 25 | sseqtrri | ⊢ ( ℚ  ×  ℚ )  ⊆  dom  (,) | 
						
							| 27 |  | fores | ⊢ ( ( Fun  (,)  ∧  ( ℚ  ×  ℚ )  ⊆  dom  (,) )  →  ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 28 | 19 26 27 | mp2an | ⊢ ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) ) | 
						
							| 29 |  | fodomnum | ⊢ ( ( ℚ  ×  ℚ )  ∈  dom  card  →  ( ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) )  →  ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ ) ) ) | 
						
							| 30 | 16 28 29 | mp2 | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ ) | 
						
							| 31 |  | domentr | ⊢ ( ( ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ )  ∧  ( ℚ  ×  ℚ )  ≈  ℕ )  →  ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ℕ ) | 
						
							| 32 | 30 12 31 | mp2an | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ℕ | 
						
							| 33 |  | domtr | ⊢ ( ( 𝑥  ≼  ( (,)  “  ( ℚ  ×  ℚ ) )  ∧  ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ℕ )  →  𝑥  ≼  ℕ ) | 
						
							| 34 | 6 32 33 | sylancl | ⊢ ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  𝑥  ≼  ℕ ) | 
						
							| 35 |  | imassrn | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ⊆  ran  (,) | 
						
							| 36 |  | ffn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  (,)  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 37 | 17 36 | ax-mp | ⊢ (,)  Fn  ( ℝ*  ×  ℝ* ) | 
						
							| 38 |  | ioombl | ⊢ ( 𝑥 (,) 𝑦 )  ∈  dom  vol | 
						
							| 39 | 38 | rgen2w | ⊢ ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ( 𝑥 (,) 𝑦 )  ∈  dom  vol | 
						
							| 40 |  | ffnov | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ dom  vol  ↔  ( (,)  Fn  ( ℝ*  ×  ℝ* )  ∧  ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ( 𝑥 (,) 𝑦 )  ∈  dom  vol ) ) | 
						
							| 41 | 37 39 40 | mpbir2an | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ dom  vol | 
						
							| 42 |  | frn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ dom  vol  →  ran  (,)  ⊆  dom  vol ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ ran  (,)  ⊆  dom  vol | 
						
							| 44 | 35 43 | sstri | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ⊆  dom  vol | 
						
							| 45 |  | sstr | ⊢ ( ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  ∧  ( (,)  “  ( ℚ  ×  ℚ ) )  ⊆  dom  vol )  →  𝑥  ⊆  dom  vol ) | 
						
							| 46 | 44 45 | mpan2 | ⊢ ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  𝑥  ⊆  dom  vol ) | 
						
							| 47 |  | dfss3 | ⊢ ( 𝑥  ⊆  dom  vol  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ∈  dom  vol ) | 
						
							| 48 | 46 47 | sylib | ⊢ ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  ∀ 𝑦  ∈  𝑥 𝑦  ∈  dom  vol ) | 
						
							| 49 |  | iunmbl2 | ⊢ ( ( 𝑥  ≼  ℕ  ∧  ∀ 𝑦  ∈  𝑥 𝑦  ∈  dom  vol )  →  ∪  𝑦  ∈  𝑥 𝑦  ∈  dom  vol ) | 
						
							| 50 | 34 48 49 | syl2anc | ⊢ ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  ∪  𝑦  ∈  𝑥 𝑦  ∈  dom  vol ) | 
						
							| 51 | 4 50 | eqeltrid | ⊢ ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  ∪  𝑥  ∈  dom  vol ) | 
						
							| 52 |  | eleq1 | ⊢ ( 𝐴  =  ∪  𝑥  →  ( 𝐴  ∈  dom  vol  ↔  ∪  𝑥  ∈  dom  vol ) ) | 
						
							| 53 | 51 52 | syl5ibrcom | ⊢ ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  →  ( 𝐴  =  ∪  𝑥  →  𝐴  ∈  dom  vol ) ) | 
						
							| 54 | 53 | imp | ⊢ ( ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  ∧  𝐴  =  ∪  𝑥 )  →  𝐴  ∈  dom  vol ) | 
						
							| 55 | 54 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥  ⊆  ( (,)  “  ( ℚ  ×  ℚ ) )  ∧  𝐴  =  ∪  𝑥 )  →  𝐴  ∈  dom  vol ) | 
						
							| 56 | 3 55 | sylbi | ⊢ ( 𝐴  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  →  𝐴  ∈  dom  vol ) | 
						
							| 57 |  | eqid | ⊢ ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  =  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 58 | 57 | tgqioo | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 59 | 56 58 | eleq2s | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  𝐴  ∈  dom  vol ) |