| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℕ0  ↦  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑧  =  𝑤  →  ( [,] ‘ 𝑧 )  =  ( [,] ‘ 𝑤 ) ) | 
						
							| 3 | 2 | sseq1d | ⊢ ( 𝑧  =  𝑤  →  ( ( [,] ‘ 𝑧 )  ⊆  𝐴  ↔  ( [,] ‘ 𝑤 )  ⊆  𝐴 ) ) | 
						
							| 4 | 3 | elrab | ⊢ ( 𝑤  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ↔  ( 𝑤  ∈  ran  𝐹  ∧  ( [,] ‘ 𝑤 )  ⊆  𝐴 ) ) | 
						
							| 5 |  | simprr | ⊢ ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  ( 𝑤  ∈  ran  𝐹  ∧  ( [,] ‘ 𝑤 )  ⊆  𝐴 ) )  →  ( [,] ‘ 𝑤 )  ⊆  𝐴 ) | 
						
							| 6 |  | fvex | ⊢ ( [,] ‘ 𝑤 )  ∈  V | 
						
							| 7 | 6 | elpw | ⊢ ( ( [,] ‘ 𝑤 )  ∈  𝒫  𝐴  ↔  ( [,] ‘ 𝑤 )  ⊆  𝐴 ) | 
						
							| 8 | 5 7 | sylibr | ⊢ ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  ( 𝑤  ∈  ran  𝐹  ∧  ( [,] ‘ 𝑤 )  ⊆  𝐴 ) )  →  ( [,] ‘ 𝑤 )  ∈  𝒫  𝐴 ) | 
						
							| 9 | 4 8 | sylan2b | ⊢ ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  →  ( [,] ‘ 𝑤 )  ∈  𝒫  𝐴 ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  ∀ 𝑤  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ( [,] ‘ 𝑤 )  ∈  𝒫  𝐴 ) | 
						
							| 11 |  | iccf | ⊢ [,] : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 12 |  | ffun | ⊢ ( [,] : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  →  Fun  [,] ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ Fun  [,] | 
						
							| 14 |  | ssrab2 | ⊢ { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ⊆  ran  𝐹 | 
						
							| 15 | 1 | dyadf | ⊢ 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 16 |  | frn | ⊢ ( 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ran  𝐹  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ran  𝐹  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 18 |  | inss2 | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 19 |  | rexpssxrxp | ⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 20 | 18 19 | sstri | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 21 | 17 20 | sstri | ⊢ ran  𝐹  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 22 | 14 21 | sstri | ⊢ { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 23 | 11 | fdmi | ⊢ dom  [,]  =  ( ℝ*  ×  ℝ* ) | 
						
							| 24 | 22 23 | sseqtrri | ⊢ { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ⊆  dom  [,] | 
						
							| 25 |  | funimass4 | ⊢ ( ( Fun  [,]  ∧  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ⊆  dom  [,] )  →  ( ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  ⊆  𝒫  𝐴  ↔  ∀ 𝑤  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ( [,] ‘ 𝑤 )  ∈  𝒫  𝐴 ) ) | 
						
							| 26 | 13 24 25 | mp2an | ⊢ ( ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  ⊆  𝒫  𝐴  ↔  ∀ 𝑤  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ( [,] ‘ 𝑤 )  ∈  𝒫  𝐴 ) | 
						
							| 27 | 10 26 | sylibr | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  ⊆  𝒫  𝐴 ) | 
						
							| 28 |  | sspwuni | ⊢ ( ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  ⊆  𝒫  𝐴  ↔  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  ⊆  𝐴 ) | 
						
							| 29 | 27 28 | sylib | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  ⊆  𝐴 ) | 
						
							| 30 |  | eqid | ⊢ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  =  ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 31 | 30 | rexmet | ⊢ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ∈  ( ∞Met ‘ ℝ ) | 
						
							| 32 |  | eqid | ⊢ ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 33 | 30 32 | tgioo | ⊢ ( topGen ‘ ran  (,) )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 34 | 33 | mopni2 | ⊢ ( ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ∈  ( ∞Met ‘ ℝ )  ∧  𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  →  ∃ 𝑟  ∈  ℝ+ ( 𝑤 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) 𝑟 )  ⊆  𝐴 ) | 
						
							| 35 | 31 34 | mp3an1 | ⊢ ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  →  ∃ 𝑟  ∈  ℝ+ ( 𝑤 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) 𝑟 )  ⊆  𝐴 ) | 
						
							| 36 |  | elssuni | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  𝐴  ⊆  ∪  ( topGen ‘ ran  (,) ) ) | 
						
							| 37 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 38 | 36 37 | sseqtrrdi | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  𝐴  ⊆  ℝ ) | 
						
							| 39 | 38 | sselda | ⊢ ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  ℝ ) | 
						
							| 40 |  | rpre | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ ) | 
						
							| 41 | 30 | bl2ioo | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑟  ∈  ℝ )  →  ( 𝑤 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) 𝑟 )  =  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) ) ) | 
						
							| 42 | 39 40 41 | syl2an | ⊢ ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑤 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) 𝑟 )  =  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) ) ) | 
						
							| 43 | 42 | sseq1d | ⊢ ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑟  ∈  ℝ+ )  →  ( ( 𝑤 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) 𝑟 )  ⊆  𝐴  ↔  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) ) | 
						
							| 44 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 45 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 46 |  | expnlbnd | ⊢ ( ( 𝑟  ∈  ℝ+  ∧  2  ∈  ℝ  ∧  1  <  2 )  →  ∃ 𝑛  ∈  ℕ ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) | 
						
							| 47 | 44 45 46 | mp3an23 | ⊢ ( 𝑟  ∈  ℝ+  →  ∃ 𝑛  ∈  ℕ ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) | 
						
							| 48 | 47 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  →  ∃ 𝑛  ∈  ℕ ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) | 
						
							| 49 | 39 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑤  ∈  ℝ ) | 
						
							| 50 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 51 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 52 | 51 | ad2antrl | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 53 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 2 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 54 | 50 52 53 | sylancr | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 2 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 55 | 54 | nnred | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 2 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 56 | 49 55 | remulcld | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 57 |  | fllelt | ⊢ ( ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ≤  ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  ∧  ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 ) ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ≤  ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  ∧  ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 ) ) ) | 
						
							| 59 | 58 | simpld | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ≤  ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 60 |  | reflcl | ⊢ ( ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 61 | 56 60 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 62 | 54 | nngt0d | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  0  <  ( 2 ↑ 𝑛 ) ) | 
						
							| 63 |  | ledivmul2 | ⊢ ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ  ∧  𝑤  ∈  ℝ  ∧  ( ( 2 ↑ 𝑛 )  ∈  ℝ  ∧  0  <  ( 2 ↑ 𝑛 ) ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ≤  𝑤  ↔  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ≤  ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 64 | 61 49 55 62 63 | syl112anc | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ≤  𝑤  ↔  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ≤  ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 65 | 59 64 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ≤  𝑤 ) | 
						
							| 66 |  | peano2re | ⊢ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  ∈  ℝ ) | 
						
							| 67 | 61 66 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  ∈  ℝ ) | 
						
							| 68 | 67 54 | nndivred | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 69 | 58 | simprd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 ) ) | 
						
							| 70 |  | ltmuldiv | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  ∈  ℝ  ∧  ( ( 2 ↑ 𝑛 )  ∈  ℝ  ∧  0  <  ( 2 ↑ 𝑛 ) ) )  →  ( ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  ↔  𝑤  <  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 71 | 49 67 55 62 70 | syl112anc | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( 𝑤  ·  ( 2 ↑ 𝑛 ) )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  ↔  𝑤  <  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 72 | 69 71 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑤  <  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 73 | 49 68 72 | ltled | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑤  ≤  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 74 | 61 54 | nndivred | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 75 |  | elicc2 | ⊢ ( ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ  ∧  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ )  →  ( 𝑤  ∈  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) )  ↔  ( 𝑤  ∈  ℝ  ∧  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ≤  𝑤  ∧  𝑤  ≤  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) ) ) | 
						
							| 76 | 74 68 75 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  ∈  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) )  ↔  ( 𝑤  ∈  ℝ  ∧  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ≤  𝑤  ∧  𝑤  ≤  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) ) ) | 
						
							| 77 | 49 65 73 76 | mpbir3and | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑤  ∈  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 78 | 56 | flcld | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℤ ) | 
						
							| 79 | 1 | dyadval | ⊢ ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℤ  ∧  𝑛  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  =  〈 ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) ,  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) 〉 ) | 
						
							| 80 | 78 52 79 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  =  〈 ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) ,  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) 〉 ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  =  ( [,] ‘ 〈 ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) ,  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) 〉 ) ) | 
						
							| 82 |  | df-ov | ⊢ ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) )  =  ( [,] ‘ 〈 ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) ,  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) 〉 ) | 
						
							| 83 | 81 82 | eqtr4di | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  =  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 84 | 77 83 | eleqtrrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑤  ∈  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ) | 
						
							| 85 |  | fveq2 | ⊢ ( 𝑧  =  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  →  ( [,] ‘ 𝑧 )  =  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ) | 
						
							| 86 | 85 | sseq1d | ⊢ ( 𝑧  =  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  →  ( ( [,] ‘ 𝑧 )  ⊆  𝐴  ↔  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ⊆  𝐴 ) ) | 
						
							| 87 |  | ffn | ⊢ ( 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝐹  Fn  ( ℤ  ×  ℕ0 ) ) | 
						
							| 88 | 15 87 | ax-mp | ⊢ 𝐹  Fn  ( ℤ  ×  ℕ0 ) | 
						
							| 89 |  | fnovrn | ⊢ ( ( 𝐹  Fn  ( ℤ  ×  ℕ0 )  ∧  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℤ  ∧  𝑛  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  ∈  ran  𝐹 ) | 
						
							| 90 | 88 78 52 89 | mp3an2i | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  ∈  ran  𝐹 ) | 
						
							| 91 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑟  ∈  ℝ+ ) | 
						
							| 92 | 91 | rpred | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑟  ∈  ℝ ) | 
						
							| 93 | 49 92 | resubcld | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  −  𝑟 )  ∈  ℝ ) | 
						
							| 94 | 93 | rexrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  −  𝑟 )  ∈  ℝ* ) | 
						
							| 95 | 49 92 | readdcld | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  +  𝑟 )  ∈  ℝ ) | 
						
							| 96 | 95 | rexrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  +  𝑟 )  ∈  ℝ* ) | 
						
							| 97 | 74 92 | readdcld | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  𝑟 )  ∈  ℝ ) | 
						
							| 98 | 61 | recnd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 99 |  | 1cnd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  1  ∈  ℂ ) | 
						
							| 100 | 55 | recnd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 2 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 101 | 54 | nnne0d | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 2 ↑ 𝑛 )  ≠  0 ) | 
						
							| 102 | 98 99 100 101 | divdird | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) )  =  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  ( 1  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 103 | 54 | nnrecred | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 1  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 104 |  | simprr | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) | 
						
							| 105 | 103 92 74 104 | ltadd2dd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  ( 1  /  ( 2 ↑ 𝑛 ) ) )  <  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  𝑟 ) ) | 
						
							| 106 | 102 105 | eqbrtrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) )  <  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  𝑟 ) ) | 
						
							| 107 | 49 68 97 72 106 | lttrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑤  <  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  𝑟 ) ) | 
						
							| 108 | 49 92 74 | ltsubaddd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( 𝑤  −  𝑟 )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ↔  𝑤  <  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  𝑟 ) ) ) | 
						
							| 109 | 107 108 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  −  𝑟 )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 110 | 49 103 | readdcld | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  +  ( 1  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 111 | 74 49 103 65 | leadd1dd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  +  ( 1  /  ( 2 ↑ 𝑛 ) ) )  ≤  ( 𝑤  +  ( 1  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 112 | 102 111 | eqbrtrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) )  ≤  ( 𝑤  +  ( 1  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 113 | 103 92 49 104 | ltadd2dd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( 𝑤  +  ( 1  /  ( 2 ↑ 𝑛 ) ) )  <  ( 𝑤  +  𝑟 ) ) | 
						
							| 114 | 68 110 95 112 113 | lelttrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) )  <  ( 𝑤  +  𝑟 ) ) | 
						
							| 115 |  | iccssioo | ⊢ ( ( ( ( 𝑤  −  𝑟 )  ∈  ℝ*  ∧  ( 𝑤  +  𝑟 )  ∈  ℝ* )  ∧  ( ( 𝑤  −  𝑟 )  <  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) )  ∧  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) )  <  ( 𝑤  +  𝑟 ) ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) )  ⊆  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) ) ) | 
						
							| 116 | 94 96 109 114 115 | syl22anc | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  /  ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) )  +  1 )  /  ( 2 ↑ 𝑛 ) ) )  ⊆  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) ) ) | 
						
							| 117 | 83 116 | eqsstrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ⊆  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) ) ) | 
						
							| 118 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) | 
						
							| 119 | 117 118 | sstrd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ⊆  𝐴 ) | 
						
							| 120 | 86 90 119 | elrabd | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) | 
						
							| 121 |  | funfvima2 | ⊢ ( ( Fun  [,]  ∧  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ⊆  dom  [,] )  →  ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  →  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ∈  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) ) | 
						
							| 122 | 13 24 121 | mp2an | ⊢ ( ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 )  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  →  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ∈  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) | 
						
							| 123 | 120 122 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ∈  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) | 
						
							| 124 |  | elunii | ⊢ ( ( 𝑤  ∈  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ∧  ( [,] ‘ ( ( ⌊ ‘ ( 𝑤  ·  ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) )  ∈  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) )  →  𝑤  ∈  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) | 
						
							| 125 | 84 123 124 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 1  /  ( 2 ↑ 𝑛 ) )  <  𝑟 ) )  →  𝑤  ∈  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) | 
						
							| 126 | 48 125 | rexlimddv | ⊢ ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴 ) )  →  𝑤  ∈  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) | 
						
							| 127 | 126 | expr | ⊢ ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑟  ∈  ℝ+ )  →  ( ( ( 𝑤  −  𝑟 ) (,) ( 𝑤  +  𝑟 ) )  ⊆  𝐴  →  𝑤  ∈  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) ) | 
						
							| 128 | 43 127 | sylbid | ⊢ ( ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑟  ∈  ℝ+ )  →  ( ( 𝑤 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) 𝑟 )  ⊆  𝐴  →  𝑤  ∈  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) ) | 
						
							| 129 | 128 | rexlimdva | ⊢ ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  →  ( ∃ 𝑟  ∈  ℝ+ ( 𝑤 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) ) ) 𝑟 )  ⊆  𝐴  →  𝑤  ∈  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) ) | 
						
							| 130 | 35 129 | mpd | ⊢ ( ( 𝐴  ∈  ( topGen ‘ ran  (,) )  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ) ) | 
						
							| 131 | 29 130 | eqelssd | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  =  𝐴 ) | 
						
							| 132 |  | fveq2 | ⊢ ( 𝑐  =  𝑎  →  ( [,] ‘ 𝑐 )  =  ( [,] ‘ 𝑎 ) ) | 
						
							| 133 | 132 | sseq1d | ⊢ ( 𝑐  =  𝑎  →  ( ( [,] ‘ 𝑐 )  ⊆  ( [,] ‘ 𝑏 )  ↔  ( [,] ‘ 𝑎 )  ⊆  ( [,] ‘ 𝑏 ) ) ) | 
						
							| 134 |  | equequ1 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑐  =  𝑏  ↔  𝑎  =  𝑏 ) ) | 
						
							| 135 | 133 134 | imbi12d | ⊢ ( 𝑐  =  𝑎  →  ( ( ( [,] ‘ 𝑐 )  ⊆  ( [,] ‘ 𝑏 )  →  𝑐  =  𝑏 )  ↔  ( ( [,] ‘ 𝑎 )  ⊆  ( [,] ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 136 | 135 | ralbidv | ⊢ ( 𝑐  =  𝑎  →  ( ∀ 𝑏  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ( ( [,] ‘ 𝑐 )  ⊆  ( [,] ‘ 𝑏 )  →  𝑐  =  𝑏 )  ↔  ∀ 𝑏  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ( ( [,] ‘ 𝑎 )  ⊆  ( [,] ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 137 | 136 | cbvrabv | ⊢ { 𝑐  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ∣  ∀ 𝑏  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ( ( [,] ‘ 𝑐 )  ⊆  ( [,] ‘ 𝑏 )  →  𝑐  =  𝑏 ) }  =  { 𝑎  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ∣  ∀ 𝑏  ∈  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } ( ( [,] ‘ 𝑎 )  ⊆  ( [,] ‘ 𝑏 )  →  𝑎  =  𝑏 ) } | 
						
							| 138 | 14 | a1i | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 }  ⊆  ran  𝐹 ) | 
						
							| 139 | 1 137 138 | dyadmbl | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  ∪  ( [,]  “  { 𝑧  ∈  ran  𝐹  ∣  ( [,] ‘ 𝑧 )  ⊆  𝐴 } )  ∈  dom  vol ) | 
						
							| 140 | 131 139 | eqeltrrd | ⊢ ( 𝐴  ∈  ( topGen ‘ ran  (,) )  →  𝐴  ∈  dom  vol ) |