| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0opn | ⊢ ( 𝐽  ∈  Top  →  ∅  ∈  𝐽 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  ∅ )  →  ∅  ∈  𝐽 ) | 
						
							| 3 |  | eleq1 | ⊢ ( 𝑆  =  ∅  →  ( 𝑆  ∈  𝐽  ↔  ∅  ∈  𝐽 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  ∅ )  →  ( 𝑆  ∈  𝐽  ↔  ∅  ∈  𝐽 ) ) | 
						
							| 5 | 2 4 | mpbird | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  ∅ )  →  𝑆  ∈  𝐽 ) | 
						
							| 6 |  | rzal | ⊢ ( 𝑆  =  ∅  →  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  ∅ )  →  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | 
						
							| 8 | 5 7 | 2thd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  ∅ )  →  ( 𝑆  ∈  𝐽  ↔  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) | 
						
							| 9 |  | opnneip | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ∈  𝐽  ∧  𝑥  ∈  𝑆 )  →  𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | 
						
							| 10 | 9 | 3expia | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ∈  𝐽 )  →  ( 𝑥  ∈  𝑆  →  𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) | 
						
							| 11 | 10 | ralrimiv | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ∈  𝐽 )  →  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  ∈  𝐽  →  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐽  ∈  Top  ∧  ¬  𝑆  =  ∅ )  →  ( 𝑆  ∈  𝐽  →  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) | 
						
							| 14 |  | df-ne | ⊢ ( 𝑆  ≠  ∅  ↔  ¬  𝑆  =  ∅ ) | 
						
							| 15 |  | r19.2z | ⊢ ( ( 𝑆  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) )  →  ∃ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝑆  ≠  ∅  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  ∃ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) | 
						
							| 17 | 14 16 | sylbir | ⊢ ( ¬  𝑆  =  ∅  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  ∃ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) | 
						
							| 18 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 19 | 18 | neii1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) )  →  𝑆  ⊆  ∪  𝐽 ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  𝑆  ⊆  ∪  𝐽 ) ) | 
						
							| 21 | 20 | rexlimdvw | ⊢ ( 𝐽  ∈  Top  →  ( ∃ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  𝑆  ⊆  ∪  𝐽 ) ) | 
						
							| 22 | 17 21 | sylan9r | ⊢ ( ( 𝐽  ∈  Top  ∧  ¬  𝑆  =  ∅ )  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  𝑆  ⊆  ∪  𝐽 ) ) | 
						
							| 23 | 18 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  ∧  ∀ 𝑥  ∈  𝑆 { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆 ) | 
						
							| 25 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 26 | 25 | snss | ⊢ ( 𝑥  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ↔  { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑆 𝑥  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ↔  ∀ 𝑥  ∈  𝑆 { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 28 |  | dfss3 | ⊢ ( 𝑆  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ↔  ∀ 𝑥  ∈  𝑆 𝑥  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 29 | 28 | biimpri | ⊢ ( ∀ 𝑥  ∈  𝑆 𝑥  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  →  𝑆  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  ∧  ∀ 𝑥  ∈  𝑆 𝑥  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝑆  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 31 | 27 30 | sylan2br | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  ∧  ∀ 𝑥  ∈  𝑆 { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝑆  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 32 | 24 31 | eqssd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  ∧  ∀ 𝑥  ∈  𝑆 { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  𝑆 ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( ∀ 𝑥  ∈  𝑆 { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  𝑆 ) ) | 
						
							| 34 | 25 | snss | ⊢ ( 𝑥  ∈  𝑆  ↔  { 𝑥 }  ⊆  𝑆 ) | 
						
							| 35 |  | sstr2 | ⊢ ( { 𝑥 }  ⊆  𝑆  →  ( 𝑆  ⊆  ∪  𝐽  →  { 𝑥 }  ⊆  ∪  𝐽 ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( 𝑆  ⊆  ∪  𝐽  →  ( { 𝑥 }  ⊆  𝑆  →  { 𝑥 }  ⊆  ∪  𝐽 ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( { 𝑥 }  ⊆  𝑆  →  { 𝑥 }  ⊆  ∪  𝐽 ) ) | 
						
							| 38 | 34 37 | biimtrid | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( 𝑥  ∈  𝑆  →  { 𝑥 }  ⊆  ∪  𝐽 ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  ∧  𝑥  ∈  𝑆 )  →  { 𝑥 }  ⊆  ∪  𝐽 ) | 
						
							| 40 | 18 | neiint | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝑥 }  ⊆  ∪  𝐽  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ↔  { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 41 | 40 | 3com23 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽  ∧  { 𝑥 }  ⊆  ∪  𝐽 )  →  ( 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ↔  { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 42 | 41 | 3expa | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  ∧  { 𝑥 }  ⊆  ∪  𝐽 )  →  ( 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ↔  { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 43 | 39 42 | syldan | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ↔  { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 44 | 43 | ralbidva | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ↔  ∀ 𝑥  ∈  𝑆 { 𝑥 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 45 | 18 | isopn3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( 𝑆  ∈  𝐽  ↔  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  𝑆 ) ) | 
						
							| 46 | 33 44 45 | 3imtr4d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  ∪  𝐽 )  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  𝑆  ∈  𝐽 ) ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  ⊆  ∪  𝐽  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  𝑆  ∈  𝐽 ) ) ) | 
						
							| 48 | 47 | com23 | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  ( 𝑆  ⊆  ∪  𝐽  →  𝑆  ∈  𝐽 ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝐽  ∈  Top  ∧  ¬  𝑆  =  ∅ )  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  ( 𝑆  ⊆  ∪  𝐽  →  𝑆  ∈  𝐽 ) ) ) | 
						
							| 50 | 22 49 | mpdd | ⊢ ( ( 𝐽  ∈  Top  ∧  ¬  𝑆  =  ∅ )  →  ( ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  →  𝑆  ∈  𝐽 ) ) | 
						
							| 51 | 13 50 | impbid | ⊢ ( ( 𝐽  ∈  Top  ∧  ¬  𝑆  =  ∅ )  →  ( 𝑆  ∈  𝐽  ↔  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) | 
						
							| 52 | 8 51 | pm2.61dan | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  ∈  𝐽  ↔  ∀ 𝑥  ∈  𝑆 𝑆  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) |