Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi | ⊢ ( 𝑃 ∈ 𝑁 → { 𝑃 } ⊆ 𝑁 ) | |
2 | opnneiss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ { 𝑃 } ⊆ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) | |
3 | 1 2 | syl3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |