Metamath Proof Explorer


Theorem opnneip

Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion opnneip ( ( 𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )

Proof

Step Hyp Ref Expression
1 snssi ( 𝑃𝑁 → { 𝑃 } ⊆ 𝑁 )
2 opnneiss ( ( 𝐽 ∈ Top ∧ 𝑁𝐽 ∧ { 𝑃 } ⊆ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )
3 1 2 syl3an3 ( ( 𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )