Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoc1.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| opoc1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| opoc1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | opoc0 | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoc1.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 2 | opoc1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 3 | opoc1.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 4 | 1 2 3 | opoc1 | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | 5 2 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) ) |
| 7 | 5 1 | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) ) |
| 8 | 5 3 | opcon1b | ⊢ ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( ( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 ) ) |
| 9 | 6 7 8 | mpd3an23 | ⊢ ( 𝐾 ∈ OP → ( ( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 ) ) |
| 10 | 4 9 | mpbid | ⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |