| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 | ⊢ ( 𝐴  ∈  ℤ  →  ( ¬  2  ∥  𝐴  ↔  ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴 ) ) | 
						
							| 2 |  | odd2np1 | ⊢ ( 𝐵  ∈  ℤ  →  ( ¬  2  ∥  𝐵  ↔  ∃ 𝑏  ∈  ℤ ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 ) ) | 
						
							| 3 | 1 2 | bi2anan9 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 )  ↔  ( ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ∃ 𝑏  ∈  ℤ ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 ) ) ) | 
						
							| 4 |  | reeanv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 )  ↔  ( ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ∃ 𝑏  ∈  ℤ ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 ) ) | 
						
							| 5 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 6 |  | zaddcl | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  +  𝑏 )  ∈  ℤ ) | 
						
							| 7 | 6 | peano2zd | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( ( 𝑎  +  𝑏 )  +  1 )  ∈  ℤ ) | 
						
							| 8 |  | dvdsmul1 | ⊢ ( ( 2  ∈  ℤ  ∧  ( ( 𝑎  +  𝑏 )  +  1 )  ∈  ℤ )  →  2  ∥  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) ) ) | 
						
							| 9 | 5 7 8 | sylancr | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  2  ∥  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) ) ) | 
						
							| 10 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 11 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 12 |  | addcl | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 𝑎  +  𝑏 )  ∈  ℂ ) | 
						
							| 13 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 14 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 15 |  | adddi | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝑎  +  𝑏 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) )  =  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  ( 2  ·  1 ) ) ) | 
						
							| 16 | 13 14 15 | mp3an13 | ⊢ ( ( 𝑎  +  𝑏 )  ∈  ℂ  →  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) )  =  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  ( 2  ·  1 ) ) ) | 
						
							| 17 | 12 16 | syl | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) )  =  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  ( 2  ·  1 ) ) ) | 
						
							| 18 |  | adddi | ⊢ ( ( 2  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( 𝑎  +  𝑏 ) )  =  ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 19 | 13 18 | mp3an1 | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( 𝑎  +  𝑏 ) )  =  ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( 2  ·  ( 𝑎  +  𝑏 ) )  +  ( 2  ·  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 2  ·  1 ) ) ) | 
						
							| 21 | 17 20 | eqtrd | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 2  ·  1 ) ) ) | 
						
							| 22 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 23 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 24 | 22 23 | eqtri | ⊢ ( 2  ·  1 )  =  ( 1  +  1 ) | 
						
							| 25 | 24 | oveq2i | ⊢ ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 2  ·  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 1  +  1 ) ) | 
						
							| 26 | 21 25 | eqtrdi | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 1  +  1 ) ) ) | 
						
							| 27 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑎  ∈  ℂ )  →  ( 2  ·  𝑎 )  ∈  ℂ ) | 
						
							| 28 | 13 27 | mpan | ⊢ ( 𝑎  ∈  ℂ  →  ( 2  ·  𝑎 )  ∈  ℂ ) | 
						
							| 29 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  𝑏 )  ∈  ℂ ) | 
						
							| 30 | 13 29 | mpan | ⊢ ( 𝑏  ∈  ℂ  →  ( 2  ·  𝑏 )  ∈  ℂ ) | 
						
							| 31 |  | add4 | ⊢ ( ( ( ( 2  ·  𝑎 )  ∈  ℂ  ∧  ( 2  ·  𝑏 )  ∈  ℂ )  ∧  ( 1  ∈  ℂ  ∧  1  ∈  ℂ ) )  →  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 1  +  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) ) ) | 
						
							| 32 | 14 14 31 | mpanr12 | ⊢ ( ( ( 2  ·  𝑎 )  ∈  ℂ  ∧  ( 2  ·  𝑏 )  ∈  ℂ )  →  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 1  +  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) ) ) | 
						
							| 33 | 28 30 32 | syl2an | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( ( 2  ·  𝑎 )  +  ( 2  ·  𝑏 ) )  +  ( 1  +  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) ) ) | 
						
							| 34 | 26 33 | eqtrd | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) ) ) | 
						
							| 35 | 10 11 34 | syl2an | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 2  ·  ( ( 𝑎  +  𝑏 )  +  1 ) )  =  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) ) ) | 
						
							| 36 | 9 35 | breqtrd | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  2  ∥  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) ) ) | 
						
							| 37 |  | oveq12 | ⊢ ( ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 )  →  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 38 | 37 | breq2d | ⊢ ( ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 )  →  ( 2  ∥  ( ( ( 2  ·  𝑎 )  +  1 )  +  ( ( 2  ·  𝑏 )  +  1 ) )  ↔  2  ∥  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 39 | 36 38 | syl5ibcom | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 )  →  2  ∥  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 40 | 39 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 )  →  2  ∥  ( 𝐴  +  𝐵 ) ) | 
						
							| 41 | 4 40 | sylbir | ⊢ ( ( ∃ 𝑎  ∈  ℤ ( ( 2  ·  𝑎 )  +  1 )  =  𝐴  ∧  ∃ 𝑏  ∈  ℤ ( ( 2  ·  𝑏 )  +  1 )  =  𝐵 )  →  2  ∥  ( 𝐴  +  𝐵 ) ) | 
						
							| 42 | 3 41 | biimtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 )  →  2  ∥  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ¬  2  ∥  𝐴  ∧  ¬  2  ∥  𝐵 ) )  →  2  ∥  ( 𝐴  +  𝐵 ) ) | 
						
							| 44 | 43 | an4s | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ¬  2  ∥  𝐴 )  ∧  ( 𝐵  ∈  ℤ  ∧  ¬  2  ∥  𝐵 ) )  →  2  ∥  ( 𝐴  +  𝐵 ) ) |