Step |
Hyp |
Ref |
Expression |
1 |
|
oposlem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
oposlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
oposlem.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
|
oposlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
oposlem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
oposlem.f |
⊢ 0 = ( 0. ‘ 𝐾 ) |
7 |
|
oposlem.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
10 |
1 8 9 2 3 4 5 6 7
|
isopos |
⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom ( lub ‘ 𝐾 ) ∧ 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
11 |
10
|
simprbi |
⊢ ( 𝐾 ∈ OP → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ 𝑋 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ↔ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) ) |
14 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
15 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) |
17 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) |
18 |
12
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ↔ ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ↔ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) |
20 |
13 16 19
|
3anbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
21 |
15 12
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ↔ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ) ) |
23 |
15 12
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ↔ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) |
25 |
20 22 24
|
3anbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ↔ ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) ) |
26 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ 𝑌 ) ) |
28 |
27
|
breq1d |
⊢ ( 𝑦 = 𝑌 → ( ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
29 |
26 28
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ↔ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) |
30 |
29
|
3anbi3d |
⊢ ( 𝑦 = 𝑌 → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
31 |
30
|
3anbi1d |
⊢ ( 𝑦 = 𝑌 → ( ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ↔ ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) ) |
32 |
25 31
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) ) |
33 |
11 32
|
mpan9 |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) |
34 |
33
|
3impb |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) |