| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppcbas.1 | ⊢ 𝑂  =  ( oppCat ‘ 𝐶 ) | 
						
							| 2 |  | oppcbas.2 | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 4 |  | slotsbhcdif | ⊢ ( ( Base ‘ ndx )  ≠  ( Hom  ‘ ndx )  ∧  ( Base ‘ ndx )  ≠  ( comp ‘ ndx )  ∧  ( Hom  ‘ ndx )  ≠  ( comp ‘ ndx ) ) | 
						
							| 5 | 4 | simp1i | ⊢ ( Base ‘ ndx )  ≠  ( Hom  ‘ ndx ) | 
						
							| 6 | 3 5 | setsnid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝐶 ) 〉 ) ) | 
						
							| 7 | 4 | simp2i | ⊢ ( Base ‘ ndx )  ≠  ( comp ‘ ndx ) | 
						
							| 8 | 3 7 | setsnid | ⊢ ( Base ‘ ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝐶 ) 〉 ) )  =  ( Base ‘ ( ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝐶 ) 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑢  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ,  𝑧  ∈  ( Base ‘ 𝐶 )  ↦  tpos  ( 〈 𝑧 ,  ( 2nd  ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st  ‘ 𝑢 ) ) ) 〉 ) ) | 
						
							| 9 | 6 8 | eqtri | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ ( ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝐶 ) 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑢  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ,  𝑧  ∈  ( Base ‘ 𝐶 )  ↦  tpos  ( 〈 𝑧 ,  ( 2nd  ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st  ‘ 𝑢 ) ) ) 〉 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 11 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 12 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 13 | 10 11 12 1 | oppcval | ⊢ ( 𝐶  ∈  V  →  𝑂  =  ( ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝐶 ) 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑢  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ,  𝑧  ∈  ( Base ‘ 𝐶 )  ↦  tpos  ( 〈 𝑧 ,  ( 2nd  ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st  ‘ 𝑢 ) ) ) 〉 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝐶  ∈  V  →  ( Base ‘ 𝑂 )  =  ( Base ‘ ( ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝐶 ) 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑢  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ,  𝑧  ∈  ( Base ‘ 𝐶 )  ↦  tpos  ( 〈 𝑧 ,  ( 2nd  ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st  ‘ 𝑢 ) ) ) 〉 ) ) ) | 
						
							| 15 | 9 14 | eqtr4id | ⊢ ( 𝐶  ∈  V  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝑂 ) ) | 
						
							| 16 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 17 | 16 | eqcomi | ⊢ ( Base ‘ ∅ )  =  ∅ | 
						
							| 18 | 17 1 | fveqprc | ⊢ ( ¬  𝐶  ∈  V  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝑂 ) ) | 
						
							| 19 | 15 18 | pm2.61i | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝑂 ) | 
						
							| 20 | 2 19 | eqtri | ⊢ 𝐵  =  ( Base ‘ 𝑂 ) |