Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
oppcbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
1nn |
⊢ 1 ∈ ℕ |
6 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
|
1lt10 |
⊢ 1 < ; 1 0 |
9 |
5 6 7 8
|
declti |
⊢ 1 < ; 1 4 |
10 |
4 9
|
ltneii |
⊢ 1 ≠ ; 1 4 |
11 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
12 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
13 |
11 12
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ 1 ≠ ; 1 4 ) |
14 |
10 13
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
15 |
3 14
|
setsnid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ) |
16 |
|
5nn |
⊢ 5 ∈ ℕ |
17 |
|
4lt5 |
⊢ 4 < 5 |
18 |
7 6 16 17
|
declt |
⊢ ; 1 4 < ; 1 5 |
19 |
|
4nn |
⊢ 4 ∈ ℕ |
20 |
7 19
|
decnncl |
⊢ ; 1 4 ∈ ℕ |
21 |
20
|
nnrei |
⊢ ; 1 4 ∈ ℝ |
22 |
7 16
|
decnncl |
⊢ ; 1 5 ∈ ℕ |
23 |
22
|
nnrei |
⊢ ; 1 5 ∈ ℝ |
24 |
4 21 23
|
lttri |
⊢ ( ( 1 < ; 1 4 ∧ ; 1 4 < ; 1 5 ) → 1 < ; 1 5 ) |
25 |
9 18 24
|
mp2an |
⊢ 1 < ; 1 5 |
26 |
4 25
|
ltneii |
⊢ 1 ≠ ; 1 5 |
27 |
|
ccondx |
⊢ ( comp ‘ ndx ) = ; 1 5 |
28 |
11 27
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ↔ 1 ≠ ; 1 5 ) |
29 |
26 28
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) |
30 |
3 29
|
setsnid |
⊢ ( Base ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
31 |
15 30
|
eqtri |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
33 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
34 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
35 |
32 33 34 1
|
oppcval |
⊢ ( 𝐶 ∈ V → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
36 |
35
|
fveq2d |
⊢ ( 𝐶 ∈ V → ( Base ‘ 𝑂 ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
37 |
31 36
|
eqtr4id |
⊢ ( 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
38 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
39 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ ) |
40 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( oppCat ‘ 𝐶 ) = ∅ ) |
41 |
1 40
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝑂 = ∅ ) |
42 |
41
|
fveq2d |
⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝑂 ) = ( Base ‘ ∅ ) ) |
43 |
38 39 42
|
3eqtr4a |
⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
44 |
37 43
|
pm2.61i |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
45 |
2 44
|
eqtri |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |