Description: An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| Assertion | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | 1 | oppccatid | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ) | 
| 3 | 2 | simpld | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |