Step |
Hyp |
Ref |
Expression |
1 |
|
df-oppc |
⊢ oppCat = ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
2 |
1
|
funmpt2 |
⊢ Fun oppCat |
3 |
|
ffvresb |
⊢ ( Fun oppCat → ( ( oppCat ↾ Cat ) : Cat ⟶ Cat ↔ ∀ 𝑐 ∈ Cat ( 𝑐 ∈ dom oppCat ∧ ( oppCat ‘ 𝑐 ) ∈ Cat ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( oppCat ↾ Cat ) : Cat ⟶ Cat ↔ ∀ 𝑐 ∈ Cat ( 𝑐 ∈ dom oppCat ∧ ( oppCat ‘ 𝑐 ) ∈ Cat ) ) |
5 |
|
elex |
⊢ ( 𝑐 ∈ Cat → 𝑐 ∈ V ) |
6 |
|
ovex |
⊢ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ∈ V |
7 |
6 1
|
dmmpti |
⊢ dom oppCat = V |
8 |
5 7
|
eleqtrrdi |
⊢ ( 𝑐 ∈ Cat → 𝑐 ∈ dom oppCat ) |
9 |
|
eqid |
⊢ ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝑐 ) |
10 |
9
|
oppccat |
⊢ ( 𝑐 ∈ Cat → ( oppCat ‘ 𝑐 ) ∈ Cat ) |
11 |
8 10
|
jca |
⊢ ( 𝑐 ∈ Cat → ( 𝑐 ∈ dom oppCat ∧ ( oppCat ‘ 𝑐 ) ∈ Cat ) ) |
12 |
4 11
|
mprgbir |
⊢ ( oppCat ↾ Cat ) : Cat ⟶ Cat |