Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
3 |
1 2
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
4 |
3
|
a1i |
⊢ ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
5 |
|
eqidd |
⊢ ( 𝐶 ∈ Cat → ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) ) |
6 |
|
eqidd |
⊢ ( 𝐶 ∈ Cat → ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) ) |
7 |
1
|
fvexi |
⊢ 𝑂 ∈ V |
8 |
7
|
a1i |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ V ) |
9 |
|
biid |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
12 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
13 |
|
simpr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
14 |
2 10 11 12 13
|
catidcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
15 |
10 1
|
oppchom |
⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) |
16 |
14 15
|
eleqtrrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
17 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
18 |
|
simpr1l |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
19 |
|
simpr1r |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
20 |
2 17 1 18 19 19
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑦 ) 𝑓 ) = ( 𝑓 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
21 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝐶 ∈ Cat ) |
22 |
|
simpr31 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
23 |
10 1
|
oppchom |
⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
24 |
22 23
|
eleqtrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
25 |
2 10 11 21 19 17 18 24
|
catrid |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑓 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = 𝑓 ) |
26 |
20 25
|
eqtrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑦 ) 𝑓 ) = 𝑓 ) |
27 |
|
simpr2l |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
28 |
2 17 1 19 19 27
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) ) |
29 |
|
simpr32 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) |
30 |
10 1
|
oppchom |
⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) |
31 |
29 30
|
eleqtrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
32 |
2 10 11 21 27 17 19 31
|
catlid |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑔 ) |
33 |
28 32
|
eqtrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = 𝑔 ) |
34 |
2 17 1 18 19 27
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
35 |
2 10 17 21 27 19 18 31 24
|
catcocl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
36 |
34 35
|
eqeltrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
37 |
10 1
|
oppchom |
⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) |
38 |
36 37
|
eleqtrrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑧 ) ) |
39 |
|
simpr2r |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
40 |
|
simpr33 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) |
41 |
10 1
|
oppchom |
⊢ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) = ( 𝑤 ( Hom ‘ 𝐶 ) 𝑧 ) |
42 |
40 41
|
eleqtrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ℎ ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
43 |
2 10 17 21 39 27 19 42 31 18 24
|
catass |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑥 ) ℎ ) = ( 𝑓 ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) ) |
44 |
2 17 1 18 27 39
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) = ( ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑥 ) ℎ ) ) |
45 |
2 17 1 18 19 39
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( 𝑓 ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) ) |
46 |
43 44 45
|
3eqtr4rd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
47 |
2 17 1 19 27 39
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) = ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) |
48 |
47
|
oveq1d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) ) |
49 |
34
|
oveq2d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
50 |
46 48 49
|
3eqtr4d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) ) |
51 |
4 5 6 8 9 16 26 33 38 50
|
iscatd2 |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) |
52 |
2 11
|
cidfn |
⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝐶 ) Fn ( Base ‘ 𝐶 ) ) |
53 |
|
dffn5 |
⊢ ( ( Id ‘ 𝐶 ) Fn ( Base ‘ 𝐶 ) ↔ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
54 |
52 53
|
sylib |
⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
55 |
54
|
eqeq2d |
⊢ ( 𝐶 ∈ Cat → ( ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ↔ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) |
56 |
55
|
anbi2d |
⊢ ( 𝐶 ∈ Cat → ( ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ↔ ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) ) |
57 |
51 56
|
mpbird |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ) |