| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcmon.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppcmon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
oppcepi.e |
⊢ 𝐸 = ( Epi ‘ 𝑂 ) |
| 4 |
|
oppcepi.m |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
| 5 |
1
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 7 |
1
|
2oppccomf |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 9 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 11 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
| 12 |
11
|
oppccat |
⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 14 |
6 8 2 13
|
monpropd |
⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( Mono ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 15 |
4 14
|
eqtrid |
⊢ ( 𝜑 → 𝑀 = ( Mono ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 16 |
15
|
oveqd |
⊢ ( 𝜑 → ( 𝑌 𝑀 𝑋 ) = ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝑂 ) ) 𝑋 ) ) |
| 17 |
|
eqid |
⊢ ( Mono ‘ ( oppCat ‘ 𝑂 ) ) = ( Mono ‘ ( oppCat ‘ 𝑂 ) ) |
| 18 |
11 10 17 3
|
oppcmon |
⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝑂 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
| 19 |
16 18
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( 𝑌 𝑀 𝑋 ) ) |