Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| oppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| Assertion | oppchom | ⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 𝐻 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oppchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 2 | oppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 3 | 1 2 | oppchomfval | ⊢ tpos 𝐻 = ( Hom ‘ 𝑂 ) | 
| 4 | 3 | oveqi | ⊢ ( 𝑋 tpos 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) | 
| 5 | ovtpos | ⊢ ( 𝑋 tpos 𝐻 𝑌 ) = ( 𝑌 𝐻 𝑋 ) | |
| 6 | 4 5 | eqtr3i | ⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 𝐻 𝑋 ) |