Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
oppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
Assertion | oppchom | ⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 𝐻 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
2 | oppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
3 | 1 2 | oppchomfval | ⊢ tpos 𝐻 = ( Hom ‘ 𝑂 ) |
4 | 3 | oveqi | ⊢ ( 𝑋 tpos 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) |
5 | ovtpos | ⊢ ( 𝑋 tpos 𝐻 𝑌 ) = ( 𝑌 𝐻 𝑋 ) | |
6 | 4 5 | eqtr3i | ⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 𝐻 𝑋 ) |