Metamath Proof Explorer


Theorem oppchom

Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses oppchom.h 𝐻 = ( Hom ‘ 𝐶 )
oppchom.o 𝑂 = ( oppCat ‘ 𝐶 )
Assertion oppchom ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 𝐻 𝑋 )

Proof

Step Hyp Ref Expression
1 oppchom.h 𝐻 = ( Hom ‘ 𝐶 )
2 oppchom.o 𝑂 = ( oppCat ‘ 𝐶 )
3 1 2 oppchomfval tpos 𝐻 = ( Hom ‘ 𝑂 )
4 3 oveqi ( 𝑋 tpos 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 )
5 ovtpos ( 𝑋 tpos 𝐻 𝑌 ) = ( 𝑌 𝐻 𝑋 )
6 4 5 eqtr3i ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 𝐻 𝑋 )