Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
oppchomf.h |
⊢ 𝐻 = ( Homf ‘ 𝐶 ) |
3 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
4 |
3 1
|
oppchom |
⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) |
5 |
4
|
a1i |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
6 |
5
|
mpoeq3ia |
⊢ ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
7 |
|
eqid |
⊢ ( Homf ‘ 𝑂 ) = ( Homf ‘ 𝑂 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
9 |
1 8
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
11 |
7 9 10
|
homffval |
⊢ ( Homf ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) ) |
12 |
2 8 3
|
homffval |
⊢ 𝐻 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
13 |
12
|
tposmpo |
⊢ tpos 𝐻 = ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
14 |
6 11 13
|
3eqtr4ri |
⊢ tpos 𝐻 = ( Homf ‘ 𝑂 ) |