Step |
Hyp |
Ref |
Expression |
1 |
|
oppchom.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
2 |
|
oppchom.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
4 |
|
slotsbhcdif |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
5 |
4
|
simp3i |
⊢ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) |
6 |
3 5
|
setsnid |
⊢ ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) = ( Hom ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
7 |
1
|
fvexi |
⊢ 𝐻 ∈ V |
8 |
7
|
tposex |
⊢ tpos 𝐻 ∈ V |
9 |
3
|
setsid |
⊢ ( ( 𝐶 ∈ V ∧ tpos 𝐻 ∈ V ) → tpos 𝐻 = ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
13 |
11 1 12 2
|
oppcval |
⊢ ( 𝐶 ∈ V → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ( Hom ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
15 |
6 10 14
|
3eqtr4a |
⊢ ( 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ 𝑂 ) ) |
16 |
|
tpos0 |
⊢ tpos ∅ = ∅ |
17 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝐶 ) = ∅ ) |
18 |
1 17
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝐻 = ∅ ) |
19 |
18
|
tposeqd |
⊢ ( ¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅ ) |
20 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( oppCat ‘ 𝐶 ) = ∅ ) |
21 |
2 20
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝑂 = ∅ ) |
22 |
21
|
fveq2d |
⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ( Hom ‘ ∅ ) ) |
23 |
3
|
str0 |
⊢ ∅ = ( Hom ‘ ∅ ) |
24 |
22 23
|
eqtr4di |
⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ∅ ) |
25 |
16 19 24
|
3eqtr4a |
⊢ ( ¬ 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ 𝑂 ) ) |
26 |
15 25
|
pm2.61i |
⊢ tpos 𝐻 = ( Hom ‘ 𝑂 ) |