Step |
Hyp |
Ref |
Expression |
1 |
|
oppchom.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
2 |
|
oppchom.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
4 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
5 |
|
4nn |
⊢ 4 ∈ ℕ |
6 |
4 5
|
decnncl |
⊢ ; 1 4 ∈ ℕ |
7 |
6
|
nnrei |
⊢ ; 1 4 ∈ ℝ |
8 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
9 |
|
5nn |
⊢ 5 ∈ ℕ |
10 |
|
4lt5 |
⊢ 4 < 5 |
11 |
4 8 9 10
|
declt |
⊢ ; 1 4 < ; 1 5 |
12 |
7 11
|
ltneii |
⊢ ; 1 4 ≠ ; 1 5 |
13 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
14 |
|
ccondx |
⊢ ( comp ‘ ndx ) = ; 1 5 |
15 |
13 14
|
neeq12i |
⊢ ( ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ↔ ; 1 4 ≠ ; 1 5 ) |
16 |
12 15
|
mpbir |
⊢ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) |
17 |
3 16
|
setsnid |
⊢ ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) = ( Hom ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
18 |
1
|
fvexi |
⊢ 𝐻 ∈ V |
19 |
18
|
tposex |
⊢ tpos 𝐻 ∈ V |
20 |
3
|
setsid |
⊢ ( ( 𝐶 ∈ V ∧ tpos 𝐻 ∈ V ) → tpos 𝐻 = ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) ) |
21 |
19 20
|
mpan2 |
⊢ ( 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
23 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
24 |
22 1 23 2
|
oppcval |
⊢ ( 𝐶 ∈ V → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ( Hom ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
26 |
17 21 25
|
3eqtr4a |
⊢ ( 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ 𝑂 ) ) |
27 |
|
tpos0 |
⊢ tpos ∅ = ∅ |
28 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝐶 ) = ∅ ) |
29 |
1 28
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝐻 = ∅ ) |
30 |
29
|
tposeqd |
⊢ ( ¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅ ) |
31 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( oppCat ‘ 𝐶 ) = ∅ ) |
32 |
2 31
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝑂 = ∅ ) |
33 |
32
|
fveq2d |
⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ( Hom ‘ ∅ ) ) |
34 |
|
df-hom |
⊢ Hom = Slot ; 1 4 |
35 |
34
|
str0 |
⊢ ∅ = ( Hom ‘ ∅ ) |
36 |
33 35
|
eqtr4di |
⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ∅ ) |
37 |
27 30 36
|
3eqtr4a |
⊢ ( ¬ 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ 𝑂 ) ) |
38 |
26 37
|
pm2.61i |
⊢ tpos 𝐻 = ( Hom ‘ 𝑂 ) |