Step |
Hyp |
Ref |
Expression |
1 |
|
oppcsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
oppcsect.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
oppcsect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
oppcsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
oppcsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
oppcinv.s |
⊢ 𝐼 = ( Inv ‘ 𝐶 ) |
7 |
|
oppcinv.t |
⊢ 𝐽 = ( Inv ‘ 𝑂 ) |
8 |
|
incom |
⊢ ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) = ( ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ) |
9 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( Sect ‘ 𝑂 ) = ( Sect ‘ 𝑂 ) |
11 |
1 2 3 5 4 9 10
|
oppcsect2 |
⊢ ( 𝜑 → ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
12 |
11
|
cnveqd |
⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ◡ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
13 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
14 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
15 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
16 |
1 13 14 15 9 3 5 4
|
sectss |
⊢ ( 𝜑 → ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
17 |
|
relxp |
⊢ Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
18 |
|
relss |
⊢ ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) |
19 |
16 17 18
|
mpisyl |
⊢ ( 𝜑 → Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
20 |
|
dfrel2 |
⊢ ( Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ↔ ◡ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
21 |
19 20
|
sylib |
⊢ ( 𝜑 → ◡ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
22 |
12 21
|
eqtrd |
⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
23 |
1 2 3 4 5 9 10
|
oppcsect2 |
⊢ ( 𝜑 → ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) = ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) |
24 |
22 23
|
ineq12d |
⊢ ( 𝜑 → ( ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) ) |
25 |
8 24
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) ) |
26 |
2 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
27 |
2
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
28 |
3 27
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
29 |
26 7 28 4 5 10
|
invfval |
⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) ) |
30 |
1 6 3 5 4 9
|
invfval |
⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) ) |
31 |
25 29 30
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |