Step |
Hyp |
Ref |
Expression |
1 |
|
oppcsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
oppcsect.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
oppcsect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
oppcsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
oppcsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
oppciso.s |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
|
oppciso.t |
⊢ 𝐽 = ( Iso ‘ 𝑂 ) |
8 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Inv ‘ 𝑂 ) = ( Inv ‘ 𝑂 ) |
10 |
1 2 3 4 5 8 9
|
oppcinv |
⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝑂 ) 𝑌 ) = ( 𝑌 ( Inv ‘ 𝐶 ) 𝑋 ) ) |
11 |
10
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑋 ( Inv ‘ 𝑂 ) 𝑌 ) = dom ( 𝑌 ( Inv ‘ 𝐶 ) 𝑋 ) ) |
12 |
2 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
13 |
2
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
15 |
12 9 14 4 5 7
|
isoval |
⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝑂 ) 𝑌 ) ) |
16 |
1 8 3 5 4 6
|
isoval |
⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) = dom ( 𝑌 ( Inv ‘ 𝐶 ) 𝑋 ) ) |
17 |
11 15 16
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |