| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcmon.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppcmon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
oppcmon.m |
⊢ 𝑀 = ( Mono ‘ 𝑂 ) |
| 4 |
|
oppcmon.e |
⊢ 𝐸 = ( Epi ‘ 𝐶 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝐶 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( oppCat ‘ 𝑐 ) = 𝑂 ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑐 = 𝐶 → ( Mono ‘ ( oppCat ‘ 𝑐 ) ) = ( Mono ‘ 𝑂 ) ) |
| 8 |
7 3
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Mono ‘ ( oppCat ‘ 𝑐 ) ) = 𝑀 ) |
| 9 |
8
|
tposeqd |
⊢ ( 𝑐 = 𝐶 → tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) = tpos 𝑀 ) |
| 10 |
|
df-epi |
⊢ Epi = ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) ) |
| 11 |
3
|
fvexi |
⊢ 𝑀 ∈ V |
| 12 |
11
|
tposex |
⊢ tpos 𝑀 ∈ V |
| 13 |
9 10 12
|
fvmpt |
⊢ ( 𝐶 ∈ Cat → ( Epi ‘ 𝐶 ) = tpos 𝑀 ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → ( Epi ‘ 𝐶 ) = tpos 𝑀 ) |
| 15 |
4 14
|
eqtrid |
⊢ ( 𝜑 → 𝐸 = tpos 𝑀 ) |
| 16 |
15
|
oveqd |
⊢ ( 𝜑 → ( 𝑌 𝐸 𝑋 ) = ( 𝑌 tpos 𝑀 𝑋 ) ) |
| 17 |
|
ovtpos |
⊢ ( 𝑌 tpos 𝑀 𝑋 ) = ( 𝑋 𝑀 𝑌 ) |
| 18 |
16 17
|
eqtr2di |
⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑌 𝐸 𝑋 ) ) |