| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 5 |
|
opphl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 6 |
|
opphl.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 7 |
|
opphl.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
oppcom.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 9 |
|
oppcom.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 10 |
|
oppcom.o |
⊢ ( 𝜑 → 𝐴 𝑂 𝐵 ) |
| 11 |
1 2 3 4 8 9
|
islnopp |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
| 12 |
10 11
|
mpbid |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ) |
| 14 |
13
|
simprd |
⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐷 ) |
| 15 |
13
|
simpld |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
| 16 |
12
|
simprd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 17 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 18 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝐷 ∈ ran 𝐿 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ 𝐷 ) |
| 22 |
1 5 3 19 20 21
|
tglnpt |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ 𝑃 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ 𝑃 ) |
| 24 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 26 |
1 2 3 17 18 23 24 25
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 27 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 28 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
| 29 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) → 𝑡 ∈ 𝑃 ) |
| 30 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) → 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 32 |
1 2 3 27 28 29 30 31
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) ∧ 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) → 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 33 |
26 32
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ↔ 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
| 34 |
33
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
| 35 |
16 34
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 36 |
14 15 35
|
jca31 |
⊢ ( 𝜑 → ( ( ¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
| 37 |
1 2 3 4 9 8
|
islnopp |
⊢ ( 𝜑 → ( 𝐵 𝑂 𝐴 ↔ ( ( ¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐵 𝐼 𝐴 ) ) ) ) |
| 38 |
36 37
|
mpbird |
⊢ ( 𝜑 → 𝐵 𝑂 𝐴 ) |