Step |
Hyp |
Ref |
Expression |
1 |
|
oppcsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
oppcsect.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
oppcsect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
oppcsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
oppcsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
oppcsect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
7 |
|
oppcsect.t |
⊢ 𝑇 = ( Sect ‘ 𝑂 ) |
8 |
2 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) |
11 |
|
eqid |
⊢ ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 ) |
12 |
2
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
14 |
8 9 10 11 7 13 4 5
|
sectss |
⊢ ( 𝜑 → ( 𝑋 𝑇 𝑌 ) ⊆ ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ) |
15 |
|
relxp |
⊢ Rel ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) |
16 |
|
relss |
⊢ ( ( 𝑋 𝑇 𝑌 ) ⊆ ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) → ( Rel ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) → Rel ( 𝑋 𝑇 𝑌 ) ) ) |
17 |
14 15 16
|
mpisyl |
⊢ ( 𝜑 → Rel ( 𝑋 𝑇 𝑌 ) ) |
18 |
|
relcnv |
⊢ Rel ◡ ( 𝑋 𝑆 𝑌 ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → Rel ◡ ( 𝑋 𝑆 𝑌 ) ) |
20 |
1 2 3 4 5 6 7
|
oppcsect |
⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑇 𝑌 ) 𝑔 ↔ 𝑔 ( 𝑋 𝑆 𝑌 ) 𝑓 ) ) |
21 |
|
vex |
⊢ 𝑓 ∈ V |
22 |
|
vex |
⊢ 𝑔 ∈ V |
23 |
21 22
|
brcnv |
⊢ ( 𝑓 ◡ ( 𝑋 𝑆 𝑌 ) 𝑔 ↔ 𝑔 ( 𝑋 𝑆 𝑌 ) 𝑓 ) |
24 |
20 23
|
bitr4di |
⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑇 𝑌 ) 𝑔 ↔ 𝑓 ◡ ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) |
25 |
17 19 24
|
eqbrrdv |
⊢ ( 𝜑 → ( 𝑋 𝑇 𝑌 ) = ◡ ( 𝑋 𝑆 𝑌 ) ) |