| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcthin.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 3 |
1 2
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 4 |
3
|
a1i |
⊢ ( 𝐶 ∈ ThinCat → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
| 5 |
|
eqidd |
⊢ ( 𝐶 ∈ ThinCat → ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ ThinCat ) |
| 7 |
|
simprr |
⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 8 |
|
simprl |
⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 10 |
6 7 8 2 9
|
thincmo |
⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 11 |
9 1
|
oppchom |
⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 12 |
11
|
eleq2i |
⊢ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ↔ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 13 |
12
|
mobii |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 14 |
10 13
|
sylibr |
⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 15 |
|
thincc |
⊢ ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat ) |
| 16 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 17 |
15 16
|
syl |
⊢ ( 𝐶 ∈ ThinCat → 𝑂 ∈ Cat ) |
| 18 |
4 5 14 17
|
isthincd |
⊢ ( 𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat ) |