| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppcthin.o | ⊢ 𝑂  =  ( oppCat ‘ 𝐶 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 3 | 1 2 | oppcbas | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝑂 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐶  ∈  ThinCat  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝑂 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝐶  ∈  ThinCat  →  ( Hom  ‘ 𝑂 )  =  ( Hom  ‘ 𝑂 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐶  ∈  ThinCat  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  →  𝐶  ∈  ThinCat ) | 
						
							| 7 |  | simprr | ⊢ ( ( 𝐶  ∈  ThinCat  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  →  𝑦  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 8 |  | simprl | ⊢ ( ( 𝐶  ∈  ThinCat  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  →  𝑥  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 10 | 6 7 8 2 9 | thincmo | ⊢ ( ( 𝐶  ∈  ThinCat  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  →  ∃* 𝑓 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 11 | 9 1 | oppchom | ⊢ ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑦 )  =  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) | 
						
							| 12 | 11 | eleq2i | ⊢ ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑦 )  ↔  𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 13 | 12 | mobii | ⊢ ( ∃* 𝑓 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑦 )  ↔  ∃* 𝑓 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 14 | 10 13 | sylibr | ⊢ ( ( 𝐶  ∈  ThinCat  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  →  ∃* 𝑓 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑦 ) ) | 
						
							| 15 |  | thincc | ⊢ ( 𝐶  ∈  ThinCat  →  𝐶  ∈  Cat ) | 
						
							| 16 | 1 | oppccat | ⊢ ( 𝐶  ∈  Cat  →  𝑂  ∈  Cat ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝐶  ∈  ThinCat  →  𝑂  ∈  Cat ) | 
						
							| 18 | 4 5 14 17 | isthincd | ⊢ ( 𝐶  ∈  ThinCat  →  𝑂  ∈  ThinCat ) |