| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppcthinco.o | ⊢ 𝑂  =  ( oppCat ‘ 𝐶 ) | 
						
							| 2 |  | oppcthinco.c | ⊢ ( 𝜑  →  𝐶  ∈  ThinCat ) | 
						
							| 3 |  | oppcthinco.1 | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝑂 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 5 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 6 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑥  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 7 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑦  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 8 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑧  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 9 | 4 5 1 6 7 8 | oppcco | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 )  =  ( 𝑓 ( 〈 𝑧 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 11 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝐶  ∈  ThinCat ) | 
						
							| 12 | 11 | thinccd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝐶  ∈  Cat ) | 
						
							| 13 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Hom  ‘ 𝑂 )  =  ( Hom  ‘ 𝑂 ) | 
						
							| 15 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝑂 ) ) | 
						
							| 16 | 4 10 14 15 7 8 | homfeqval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 )  =  ( 𝑦 ( Hom  ‘ 𝑂 ) 𝑧 ) ) | 
						
							| 17 | 10 1 | oppchom | ⊢ ( 𝑦 ( Hom  ‘ 𝑂 ) 𝑧 )  =  ( 𝑧 ( Hom  ‘ 𝐶 ) 𝑦 ) | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 )  =  ( 𝑧 ( Hom  ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 19 | 13 18 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑔  ∈  ( 𝑧 ( Hom  ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 20 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 21 | 4 10 14 15 6 7 | homfeqval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  =  ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑦 ) ) | 
						
							| 22 | 10 1 | oppchom | ⊢ ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑦 )  =  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) | 
						
							| 23 | 21 22 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  =  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 24 | 20 23 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 25 | 4 10 5 12 8 7 6 19 24 | catcocl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑓 ( 〈 𝑧 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 )  ∈  ( 𝑧 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 26 | 4 10 14 15 6 8 | homfeqval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑧 )  =  ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑧 ) ) | 
						
							| 27 | 10 1 | oppchom | ⊢ ( 𝑥 ( Hom  ‘ 𝑂 ) 𝑧 )  =  ( 𝑧 ( Hom  ‘ 𝐶 ) 𝑥 ) | 
						
							| 28 | 26 27 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑧 )  =  ( 𝑧 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 29 | 25 28 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑓 ( 〈 𝑧 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 )  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑧 ) ) | 
						
							| 30 | 4 10 5 12 6 7 8 20 13 | catcocl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑧 ) ) | 
						
							| 31 | 6 8 29 30 4 10 11 | thincmo2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑓 ( 〈 𝑧 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) | 
						
							| 32 | 9 31 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) | 
						
							| 33 | 32 | ralrimivva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑧  ∈  ( Base ‘ 𝐶 ) ) )  →  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) | 
						
							| 34 | 33 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ∀ 𝑧  ∈  ( Base ‘ 𝐶 ) ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) | 
						
							| 35 |  | eqid | ⊢ ( comp ‘ 𝑂 )  =  ( comp ‘ 𝑂 ) | 
						
							| 36 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 37 | 3 | homfeqbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝑂 ) ) | 
						
							| 38 | 5 35 10 36 37 3 | comfeq | ⊢ ( 𝜑  →  ( ( compf ‘ 𝐶 )  =  ( compf ‘ 𝑂 )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐶 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ∀ 𝑧  ∈  ( Base ‘ 𝐶 ) ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ∀ 𝑔  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) ) | 
						
							| 39 | 34 38 | mpbird | ⊢ ( 𝜑  →  ( compf ‘ 𝐶 )  =  ( compf ‘ 𝑂 ) ) |