Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Zhi Wang Examples of categories Thin categories oppcthinendc  
				
		 
		
			
		 
		Description:   The opposite category of a thin category whose morphisms are all
       endomorphisms has the same base, hom-sets ( oppcendc  ) and composition
       operation as the original category.  (Contributed by Zhi Wang , 16-Oct-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						oppcthinco.o ⊢  𝑂   =  ( oppCat ‘ 𝐶  )  
					
						oppcthinco.c ⊢  ( 𝜑   →  𝐶   ∈  ThinCat )  
					
						oppcthinendc.b ⊢  𝐵   =  ( Base ‘ 𝐶  )  
					
						oppcthinendc.h ⊢  𝐻   =  ( Hom  ‘ 𝐶  )  
					
						oppcthinendc.1 ⊢  ( ( 𝜑   ∧  ( 𝑥   ∈  𝐵   ∧  𝑦   ∈  𝐵  ) )  →  ( 𝑥   ≠  𝑦   →  ( 𝑥  𝐻  𝑦  )  =  ∅ ) )  
				
					Assertion 
					oppcthinendc ⊢   ( 𝜑   →  ( compf 𝐶  )  =  ( compf 𝑂  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							oppcthinco.o ⊢  𝑂   =  ( oppCat ‘ 𝐶  )  
						
							2 
								
							 
							oppcthinco.c ⊢  ( 𝜑   →  𝐶   ∈  ThinCat )  
						
							3 
								
							 
							oppcthinendc.b ⊢  𝐵   =  ( Base ‘ 𝐶  )  
						
							4 
								
							 
							oppcthinendc.h ⊢  𝐻   =  ( Hom  ‘ 𝐶  )  
						
							5 
								
							 
							oppcthinendc.1 ⊢  ( ( 𝜑   ∧  ( 𝑥   ∈  𝐵   ∧  𝑦   ∈  𝐵  ) )  →  ( 𝑥   ≠  𝑦   →  ( 𝑥  𝐻  𝑦  )  =  ∅ ) )  
						
							6 
								1  3  4  5 
							 
							oppcendc ⊢  ( 𝜑   →  ( Homf 𝐶  )  =  ( Homf 𝑂  ) )  
						
							7 
								1  2  6 
							 
							oppcthinco ⊢  ( 𝜑   →  ( compf 𝐶  )  =  ( compf 𝑂  ) )