| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcup.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
oppcup.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 3 |
|
oppcup.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 4 |
|
oppcup.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 5 |
|
oppcup.xb |
⊢ ∙ = ( comp ‘ 𝐸 ) |
| 6 |
|
oppcup.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
| 7 |
|
oppcup.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 8 |
|
oppcup.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
oppcup.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) |
| 10 |
|
oppcup.o |
⊢ 𝑂 = ( oppCat ‘ 𝐷 ) |
| 11 |
|
oppcup.p |
⊢ 𝑃 = ( oppCat ‘ 𝐸 ) |
| 12 |
10 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 13 |
11 2
|
oppcbas |
⊢ 𝐶 = ( Base ‘ 𝑃 ) |
| 14 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
| 15 |
|
eqid |
⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) |
| 16 |
|
eqid |
⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) |
| 17 |
10 11 7
|
funcoppc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| 18 |
4 11
|
oppchom |
⊢ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) |
| 19 |
9 18
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 20 |
12 13 14 15 16 6 17 8 19
|
isup |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 21 |
4 11
|
oppchom |
⊢ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) |
| 22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ) |
| 23 |
3 10
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 𝐻 𝑋 ) |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 𝐻 𝑋 ) ) |
| 25 |
|
ovtpos |
⊢ ( 𝑋 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑋 ) |
| 26 |
25
|
fveq1i |
⊢ ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) = ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) |
| 27 |
26
|
oveq1i |
⊢ ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) |
| 28 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ 𝐶 ) |
| 29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 30 |
1 2 29
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 32 |
30 31
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 34 |
30 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 35 |
2 5 11 28 32 34
|
oppcco |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 36 |
27 35
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 38 |
24 37
|
reueqbidv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 39 |
22 38
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 40 |
39
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 41 |
20 40
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |