Metamath Proof Explorer


Theorem oppfval

Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Assertion oppfval ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 oppFunc 𝐺 ) = ⟨ 𝐹 , tpos 𝐺 ⟩ )

Proof

Step Hyp Ref Expression
1 relfunc Rel ( 𝐶 Func 𝐷 )
2 1 brrelex12i ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) )
3 oppfvalg ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , ⟨ 𝐹 , tpos 𝐺 ⟩ , ∅ ) )
4 2 3 syl ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , ⟨ 𝐹 , tpos 𝐺 ⟩ , ∅ ) )
5 oppfvallem ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) )
6 5 iftrued ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , ⟨ 𝐹 , tpos 𝐺 ⟩ , ∅ ) = ⟨ 𝐹 , tpos 𝐺 ⟩ )
7 4 6 eqtrd ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 oppFunc 𝐺 ) = ⟨ 𝐹 , tpos 𝐺 ⟩ )