| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppggic.o | ⊢ 𝑂  =  ( oppg ‘ 𝐺 ) | 
						
							| 2 |  | oppgcntr.z | ⊢ 𝑍  =  ( Cntr ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 ) | 
						
							| 4 | 1 3 | oppgcntz | ⊢ ( ( Cntz ‘ 𝐺 ) ‘ ( Base ‘ 𝐺 ) )  =  ( ( Cntz ‘ 𝑂 ) ‘ ( Base ‘ 𝐺 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 6 | 5 3 | cntrval | ⊢ ( ( Cntz ‘ 𝐺 ) ‘ ( Base ‘ 𝐺 ) )  =  ( Cntr ‘ 𝐺 ) | 
						
							| 7 | 6 2 | eqtr4i | ⊢ ( ( Cntz ‘ 𝐺 ) ‘ ( Base ‘ 𝐺 ) )  =  𝑍 | 
						
							| 8 | 1 5 | oppgbas | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑂 ) | 
						
							| 9 |  | eqid | ⊢ ( Cntz ‘ 𝑂 )  =  ( Cntz ‘ 𝑂 ) | 
						
							| 10 | 8 9 | cntrval | ⊢ ( ( Cntz ‘ 𝑂 ) ‘ ( Base ‘ 𝐺 ) )  =  ( Cntr ‘ 𝑂 ) | 
						
							| 11 | 4 7 10 | 3eqtr3i | ⊢ 𝑍  =  ( Cntr ‘ 𝑂 ) |