Step |
Hyp |
Ref |
Expression |
1 |
|
oppggic.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
2 |
|
oppgcntz.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
3 |
|
eqcom |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
6 |
4 1 5
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
7 |
4 1 5
|
oppgplus |
⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) |
8 |
6 7
|
eqeq12i |
⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
9 |
3 8
|
bitr4i |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
14 |
13 2
|
cntzrcl |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) → ( 𝐺 ∈ V ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ) ) |
15 |
14
|
simprd |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
16 |
13 4 2
|
elcntz |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
17 |
15 16
|
biadanii |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
18 |
1 13
|
oppgbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
19 |
|
eqid |
⊢ ( Cntz ‘ 𝑂 ) = ( Cntz ‘ 𝑂 ) |
20 |
18 19
|
cntzrcl |
⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) → ( 𝑂 ∈ V ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ) ) |
21 |
20
|
simprd |
⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
22 |
18 5 19
|
elcntz |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
23 |
21 22
|
biadanii |
⊢ ( 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) ) ) ) |
24 |
12 17 23
|
3bitr4i |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝐴 ) ↔ 𝑥 ∈ ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) ) |
25 |
24
|
eqriv |
⊢ ( 𝑍 ‘ 𝐴 ) = ( ( Cntz ‘ 𝑂 ) ‘ 𝐴 ) |