| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppgbas.1 | ⊢ 𝑂  =  ( oppg ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 1 2 | oppgbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑅  ∈  Grp  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝑅  ∈  Grp  →  ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 7 | 1 6 | oppgid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑂 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑅  ∈  Grp  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑂 ) ) | 
						
							| 9 |  | grpmnd | ⊢ ( 𝑅  ∈  Grp  →  𝑅  ∈  Mnd ) | 
						
							| 10 | 1 | oppgmnd | ⊢ ( 𝑅  ∈  Mnd  →  𝑂  ∈  Mnd ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑅  ∈  Grp  →  𝑂  ∈  Mnd ) | 
						
							| 12 |  | eqid | ⊢ ( invg ‘ 𝑅 )  =  ( invg ‘ 𝑅 ) | 
						
							| 13 | 2 12 | grpinvcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) | 
						
							| 16 | 14 1 15 | oppgplus | ⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) | 
						
							| 17 | 2 14 6 12 | grprinv | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 18 | 16 17 | eqtrid | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 19 | 4 5 8 11 13 18 | isgrpd2 | ⊢ ( 𝑅  ∈  Grp  →  𝑂  ∈  Grp ) |