Metamath Proof Explorer


Theorem oppggrp

Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypothesis oppgbas.1 𝑂 = ( oppg𝑅 )
Assertion oppggrp ( 𝑅 ∈ Grp → 𝑂 ∈ Grp )

Proof

Step Hyp Ref Expression
1 oppgbas.1 𝑂 = ( oppg𝑅 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 1 2 oppgbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 )
4 3 a1i ( 𝑅 ∈ Grp → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) )
5 eqidd ( 𝑅 ∈ Grp → ( +g𝑂 ) = ( +g𝑂 ) )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 1 6 oppgid ( 0g𝑅 ) = ( 0g𝑂 )
8 7 a1i ( 𝑅 ∈ Grp → ( 0g𝑅 ) = ( 0g𝑂 ) )
9 grpmnd ( 𝑅 ∈ Grp → 𝑅 ∈ Mnd )
10 1 oppgmnd ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd )
11 9 10 syl ( 𝑅 ∈ Grp → 𝑂 ∈ Mnd )
12 eqid ( invg𝑅 ) = ( invg𝑅 )
13 2 12 grpinvcl ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( invg𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) )
14 eqid ( +g𝑅 ) = ( +g𝑅 )
15 eqid ( +g𝑂 ) = ( +g𝑂 )
16 14 1 15 oppgplus ( ( ( invg𝑅 ) ‘ 𝑥 ) ( +g𝑂 ) 𝑥 ) = ( 𝑥 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑥 ) )
17 2 14 6 12 grprinv ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑥 ) ) = ( 0g𝑅 ) )
18 16 17 eqtrid ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invg𝑅 ) ‘ 𝑥 ) ( +g𝑂 ) 𝑥 ) = ( 0g𝑅 ) )
19 4 5 8 11 13 18 isgrpd2 ( 𝑅 ∈ Grp → 𝑂 ∈ Grp )