Step |
Hyp |
Ref |
Expression |
1 |
|
oppgbas.1 |
⊢ 𝑂 = ( oppg ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
1 2
|
oppgbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
4 |
3
|
a1i |
⊢ ( 𝑅 ∈ Grp → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
5 |
|
eqidd |
⊢ ( 𝑅 ∈ Grp → ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
7 |
1 6
|
oppgid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
8 |
7
|
a1i |
⊢ ( 𝑅 ∈ Grp → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) ) |
9 |
|
grpmnd |
⊢ ( 𝑅 ∈ Grp → 𝑅 ∈ Mnd ) |
10 |
1
|
oppgmnd |
⊢ ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd ) |
11 |
9 10
|
syl |
⊢ ( 𝑅 ∈ Grp → 𝑂 ∈ Mnd ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
13 |
2 12
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
16 |
14 1 15
|
oppgplus |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) |
17 |
2 14 6 12
|
grprinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
18 |
16 17
|
eqtrid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
19 |
4 5 8 11 13 18
|
isgrpd2 |
⊢ ( 𝑅 ∈ Grp → 𝑂 ∈ Grp ) |