| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppgbas.1 | ⊢ 𝑂  =  ( oppg ‘ 𝑅 ) | 
						
							| 2 |  | oppgid.2 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | ancom | ⊢ ( ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦 )  ↔  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦  ∧  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦 ) ) | 
						
							| 4 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) | 
						
							| 6 | 4 1 5 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) | 
						
							| 7 | 6 | eqeq1i | ⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  𝑦  ↔  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦 ) | 
						
							| 8 | 4 1 5 | oppgplus | ⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) | 
						
							| 9 | 8 | eqeq1i | ⊢ ( ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  𝑦  ↔  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦 ) | 
						
							| 10 | 7 9 | anbi12i | ⊢ ( ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  𝑦 )  ↔  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦  ∧  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦 ) ) | 
						
							| 11 | 3 10 | bitr4i | ⊢ ( ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦 )  ↔  ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 12 | 11 | ralbii | ⊢ ( ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 13 | 12 | anbi2i | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦 ) )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 14 | 13 | iotabii | ⊢ ( ℩ 𝑥 ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) )  =  ( ℩ 𝑥 ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 16 | 15 4 2 | grpidval | ⊢  0   =  ( ℩ 𝑥 ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 17 | 1 15 | oppgbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) | 
						
							| 18 |  | eqid | ⊢ ( 0g ‘ 𝑂 )  =  ( 0g ‘ 𝑂 ) | 
						
							| 19 | 17 5 18 | grpidval | ⊢ ( 0g ‘ 𝑂 )  =  ( ℩ 𝑥 ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 20 | 14 16 19 | 3eqtr4i | ⊢  0   =  ( 0g ‘ 𝑂 ) |