Step |
Hyp |
Ref |
Expression |
1 |
|
oppgbas.1 |
⊢ 𝑂 = ( oppg ‘ 𝑅 ) |
2 |
|
oppginv.2 |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
3 2
|
grpinvf |
⊢ ( 𝑅 ∈ Grp → 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
7 |
5 1 6
|
oppgplus |
⊢ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 𝐼 ‘ 𝑥 ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
3 5 8 2
|
grprinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 𝐼 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
10 |
7 9
|
eqtrid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
11 |
10
|
ralrimiva |
⊢ ( 𝑅 ∈ Grp → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
12 |
1
|
oppggrp |
⊢ ( 𝑅 ∈ Grp → 𝑂 ∈ Grp ) |
13 |
1 3
|
oppgbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
14 |
1 8
|
oppgid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
15 |
|
eqid |
⊢ ( invg ‘ 𝑂 ) = ( invg ‘ 𝑂 ) |
16 |
13 6 14 15
|
isgrpinv |
⊢ ( 𝑂 ∈ Grp → ( ( 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( invg ‘ 𝑂 ) = 𝐼 ) ) |
17 |
12 16
|
syl |
⊢ ( 𝑅 ∈ Grp → ( ( 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( invg ‘ 𝑂 ) = 𝐼 ) ) |
18 |
4 11 17
|
mpbi2and |
⊢ ( 𝑅 ∈ Grp → ( invg ‘ 𝑂 ) = 𝐼 ) |
19 |
18
|
eqcomd |
⊢ ( 𝑅 ∈ Grp → 𝐼 = ( invg ‘ 𝑂 ) ) |