Step |
Hyp |
Ref |
Expression |
1 |
|
oppglsm.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
2 |
|
oppglsm.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
1
|
fvexi |
⊢ 𝑂 ∈ V |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
1 4
|
oppgbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
7 |
|
eqid |
⊢ ( LSSum ‘ 𝑂 ) = ( LSSum ‘ 𝑂 ) |
8 |
5 6 7
|
lsmfval |
⊢ ( 𝑂 ∈ V → ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) ) |
9 |
3 8
|
ax-mp |
⊢ ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
4 10 2
|
lsmfval |
⊢ ( 𝐺 ∈ V → ⊕ = ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
12 |
11
|
tposeqd |
⊢ ( 𝐺 ∈ V → tpos ⊕ = tpos ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
13 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
14 |
13
|
reldmmpo |
⊢ Rel dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
15 |
13
|
mpofun |
⊢ Fun ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
16 |
|
funforn |
⊢ ( Fun ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
17 |
15 16
|
mpbi |
⊢ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
18 |
|
tposfo2 |
⊢ ( Rel dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) → tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : ◡ dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
19 |
14 17 18
|
mp2 |
⊢ tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : ◡ dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
20 |
|
forn |
⊢ ( tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) : ◡ dom ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) –onto→ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) → ran tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
21 |
19 20
|
ax-mp |
⊢ ran tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
22 |
10 1 6
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
23 |
22
|
eqcomi |
⊢ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) |
24 |
23
|
a1i |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
25 |
24
|
mpoeq3ia |
⊢ ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
26 |
25
|
tposmpo |
⊢ tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
27 |
26
|
rneqi |
⊢ ran tpos ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
28 |
21 27
|
eqtr3i |
⊢ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
29 |
28
|
a1i |
⊢ ( ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
30 |
29
|
mpoeq3ia |
⊢ ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
31 |
30
|
tposmpo |
⊢ tpos ( 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑦 ∈ 𝑢 , 𝑥 ∈ 𝑡 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) |
32 |
12 31
|
eqtrdi |
⊢ ( 𝐺 ∈ V → tpos ⊕ = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) ) |
33 |
9 32
|
eqtr4id |
⊢ ( 𝐺 ∈ V → ( LSSum ‘ 𝑂 ) = tpos ⊕ ) |
34 |
33
|
oveqd |
⊢ ( 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑇 tpos ⊕ 𝑈 ) ) |
35 |
|
ovtpos |
⊢ ( 𝑇 tpos ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) |
36 |
34 35
|
eqtrdi |
⊢ ( 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
37 |
|
eqid |
⊢ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) |
38 |
|
0ex |
⊢ ∅ ∈ V |
39 |
|
eqidd |
⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ∅ = ∅ ) |
40 |
37 38 39
|
elovmpo |
⊢ ( 𝑥 ∈ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ↔ ( 𝑇 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑈 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ∅ ) ) |
41 |
40
|
simp3bi |
⊢ ( 𝑥 ∈ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) → 𝑥 ∈ ∅ ) |
42 |
41
|
ssriv |
⊢ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ⊆ ∅ |
43 |
|
ss0 |
⊢ ( ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ⊆ ∅ → ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) = ∅ ) |
44 |
42 43
|
ax-mp |
⊢ ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) = ∅ |
45 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) → 𝑡 ⊆ ( Base ‘ 𝐺 ) ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 ⊆ ( Base ‘ 𝐺 ) ) |
47 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) |
48 |
47
|
3ad2ant1 |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∅ ) |
49 |
46 48
|
sseqtrd |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 ⊆ ∅ ) |
50 |
|
ss0 |
⊢ ( 𝑡 ⊆ ∅ → 𝑡 = ∅ ) |
51 |
49 50
|
syl |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → 𝑡 = ∅ ) |
52 |
51
|
orcd |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( 𝑡 = ∅ ∨ 𝑢 = ∅ ) ) |
53 |
|
0mpo0 |
⊢ ( ( 𝑡 = ∅ ∨ 𝑢 = ∅ ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ∅ ) |
54 |
52 53
|
syl |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ∅ ) |
55 |
54
|
rneqd |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ran ∅ ) |
56 |
|
rn0 |
⊢ ran ∅ = ∅ |
57 |
55 56
|
eqtrdi |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ∅ ) |
58 |
57
|
mpoeq3dva |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) ) |
59 |
9 58
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → ( LSSum ‘ 𝑂 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) ) |
60 |
59
|
oveqd |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑇 ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐺 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐺 ) ↦ ∅ ) 𝑈 ) ) |
61 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( LSSum ‘ 𝐺 ) = ∅ ) |
62 |
2 61
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → ⊕ = ∅ ) |
63 |
62
|
oveqd |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑈 ⊕ 𝑇 ) = ( 𝑈 ∅ 𝑇 ) ) |
64 |
|
0ov |
⊢ ( 𝑈 ∅ 𝑇 ) = ∅ |
65 |
63 64
|
eqtrdi |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑈 ⊕ 𝑇 ) = ∅ ) |
66 |
44 60 65
|
3eqtr4a |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
67 |
36 66
|
pm2.61i |
⊢ ( 𝑇 ( LSSum ‘ 𝑂 ) 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) |