Step |
Hyp |
Ref |
Expression |
1 |
|
oppgbas.1 |
⊢ 𝑂 = ( oppg ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
1 2
|
oppgbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
4 |
3
|
a1i |
⊢ ( 𝑅 ∈ Mnd → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
5 |
|
eqidd |
⊢ ( 𝑅 ∈ Mnd → ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
8 |
6 1 7
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) |
9 |
2 6
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
10 |
9
|
3com23 |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
11 |
8 10
|
eqeltrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
12 |
|
simpl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Mnd ) |
13 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
14 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
15 |
|
simpr1 |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
16 |
2 6
|
mndass |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
17 |
12 13 14 15 16
|
syl13anc |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) ) |
18 |
17
|
eqcomd |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) ) |
19 |
8
|
oveq1i |
⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑂 ) 𝑧 ) |
20 |
6 1 7
|
oppgplus |
⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
21 |
19 20
|
eqtri |
⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
22 |
6 1 7
|
oppgplus |
⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) |
23 |
22
|
oveq2i |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ) |
24 |
6 1 7
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) |
25 |
23 24
|
eqtri |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) |
26 |
18 21 25
|
3eqtr4g |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) ) ) |
27 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
28 |
2 27
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
29 |
6 1 7
|
oppgplus |
⊢ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) |
30 |
2 6 27
|
mndrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
31 |
29 30
|
eqtrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑂 ) 𝑥 ) = 𝑥 ) |
32 |
6 1 7
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑥 ) |
33 |
2 6 27
|
mndlid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
34 |
32 33
|
eqtrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
35 |
4 5 11 26 28 31 34
|
ismndd |
⊢ ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd ) |