| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppgbas.1 | ⊢ 𝑂  =  ( oppg ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 1 2 | oppgbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑅  ∈  Mnd  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝑅  ∈  Mnd  →  ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) | 
						
							| 8 | 6 1 7 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) | 
						
							| 9 | 2 6 | mndcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 10 | 9 | 3com23 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 11 | 8 10 | eqeltrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑅  ∈  Mnd ) | 
						
							| 13 |  | simpr3 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 14 |  | simpr2 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 15 |  | simpr1 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 2 6 | mndass | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑧  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 )  =  ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 17 | 12 13 14 15 16 | syl13anc | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 )  =  ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) )  =  ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 19 | 8 | oveq1i | ⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 )  =  ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑂 ) 𝑧 ) | 
						
							| 20 | 6 1 7 | oppgplus | ⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑂 ) 𝑧 )  =  ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 21 | 19 20 | eqtri | ⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 )  =  ( 𝑧 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 22 | 6 1 7 | oppgplus | ⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 )  =  ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) | 
						
							| 23 | 22 | oveq2i | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) )  =  ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 24 | 6 1 7 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) | 
						
							| 25 | 23 24 | eqtri | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) )  =  ( ( 𝑧 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑥 ) | 
						
							| 26 | 18 21 25 | 3eqtr4g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑂 ) 𝑧 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 28 | 2 27 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 6 1 7 | oppgplus | ⊢ ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑂 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) | 
						
							| 30 | 2 6 27 | mndrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  𝑥 ) | 
						
							| 31 | 29 30 | eqtrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑂 ) 𝑥 )  =  𝑥 ) | 
						
							| 32 | 6 1 7 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) ( 0g ‘ 𝑅 ) )  =  ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑥 ) | 
						
							| 33 | 2 6 27 | mndlid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑥 )  =  𝑥 ) | 
						
							| 34 | 32 33 | eqtrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( +g ‘ 𝑂 ) ( 0g ‘ 𝑅 ) )  =  𝑥 ) | 
						
							| 35 | 4 5 11 26 28 31 34 | ismndd | ⊢ ( 𝑅  ∈  Mnd  →  𝑂  ∈  Mnd ) |