| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppgbas.1 | ⊢ 𝑂  =  ( oppg ‘ 𝑅 ) | 
						
							| 2 | 1 | oppgmnd | ⊢ ( 𝑅  ∈  Mnd  →  𝑂  ∈  Mnd ) | 
						
							| 3 |  | eqid | ⊢ ( oppg ‘ 𝑂 )  =  ( oppg ‘ 𝑂 ) | 
						
							| 4 | 3 | oppgmnd | ⊢ ( 𝑂  ∈  Mnd  →  ( oppg ‘ 𝑂 )  ∈  Mnd ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 | 1 5 | oppgbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) | 
						
							| 7 | 3 6 | oppgbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( oppg ‘ 𝑂 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( ⊤  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( oppg ‘ 𝑂 ) ) ) | 
						
							| 9 |  | eqidd | ⊢ ( ⊤  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝑂 ) )  =  ( +g ‘ ( oppg ‘ 𝑂 ) ) | 
						
							| 12 | 10 3 11 | oppgplus | ⊢ ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 14 | 13 1 10 | oppgplus | ⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) | 
						
							| 15 | 12 14 | eqtri | ⊢ ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑥 ( +g ‘ ( oppg ‘ 𝑂 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 17 | 8 9 16 | mndpropd | ⊢ ( ⊤  →  ( ( oppg ‘ 𝑂 )  ∈  Mnd  ↔  𝑅  ∈  Mnd ) ) | 
						
							| 18 | 17 | mptru | ⊢ ( ( oppg ‘ 𝑂 )  ∈  Mnd  ↔  𝑅  ∈  Mnd ) | 
						
							| 19 | 4 18 | sylib | ⊢ ( 𝑂  ∈  Mnd  →  𝑅  ∈  Mnd ) | 
						
							| 20 | 2 19 | impbii | ⊢ ( 𝑅  ∈  Mnd  ↔  𝑂  ∈  Mnd ) |