| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndtccat.c |
⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) |
| 2 |
|
mndtccat.m |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 3 |
|
oppgoppchom.d |
⊢ ( 𝜑 → 𝐷 = ( MndToCat ‘ ( oppg ‘ 𝑀 ) ) ) |
| 4 |
|
oppgoppchom.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 5 |
|
oppgoppchom.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 6 |
|
oppgoppchom.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑂 ) ) |
| 7 |
|
oppgoppchom.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐷 ) ) |
| 8 |
|
oppgoppchom.j |
⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝑂 ) ) |
| 9 |
|
eqid |
⊢ ( oppg ‘ 𝑀 ) = ( oppg ‘ 𝑀 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 11 |
9 10
|
oppgbas |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( oppg ‘ 𝑀 ) ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = ( Base ‘ ( oppg ‘ 𝑀 ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 14 |
4 13
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 15 |
14
|
eqcomi |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) ) |
| 17 |
|
eqidd |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| 18 |
1 2 16 6 6 17
|
mndtchom |
⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑌 ) = ( Base ‘ 𝑀 ) ) |
| 19 |
9
|
oppgmnd |
⊢ ( 𝑀 ∈ Mnd → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 20 |
2 19
|
syl |
⊢ ( 𝜑 → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 21 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) ) |
| 22 |
3 20 21 5 5 7
|
mndtchom |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( Base ‘ ( oppg ‘ 𝑀 ) ) ) |
| 23 |
12 18 22
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 24 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 25 |
24 4
|
oppchom |
⊢ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑌 ) |
| 26 |
23 25
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑌 ( Hom ‘ 𝑂 ) 𝑌 ) ) |
| 27 |
8
|
oveqd |
⊢ ( 𝜑 → ( 𝑌 𝐽 𝑌 ) = ( 𝑌 ( Hom ‘ 𝑂 ) 𝑌 ) ) |
| 28 |
26 27
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑌 𝐽 𝑌 ) ) |